
FUNK

RADIO · FERNSEHEN · ELEKTRONIK

BERLIN . FRANKFURTIM. . STUTTGART . 1. JUNIHEFT 1952 . Nr. 11

FUNK. TECHNIK

CHEFREDAKTEUR CURT RINT

AUS DEM INHALT

eginn des öffentlichen Fernsehens am 1. Januar 1953	Gegentaktverstärker mit neuartiger Schaltung
echnische Messe Hannover 1952: Stetige Weiterentwicklung — aber keine sen- sationellen Neuheiten 284	Messungen an Antennen-Modellen 30 Welche Antennenanlage ist die günstigste? 30
urznachrichten	FT-WERKSTATTWINKE
ernsehsender in Europa	Der Empfänger als Schwebungssummer Schwer lösbare Gitterkappen Und wieder akustische Rückkopplung 30: FT-ZEITSCHRIFTENDIENST 30: FT-BRIEFKASTEN 30: FT-FMPFANGERKARTEI Graetz 157 WR 30: FT-KARTEI 1952 3. Umschlagseits

Zu unserem Titelbild: Hochspannungs-Expansionsschalter der Siemens-Schuckert-Werke auf dem Gelände der Technischen Messe Hannover

Werkbild Siemens

Beginn des öffentlichen Fernsehens am 1. Januar 1953

Termine sind Glückssachel Im Oktober 1948 wurden die ersten Pläne eines westdeutschen Fernsehdienstes und für eine Relaisstrecke Hamburg—Köln besprochen. Man förderte die Planungen so weit, daß es die Verantwortlichen glaubten wagen zu dürfen, im Januar 1951 den Beginn des öffentlichen Fernsehens im NWDR-Bereich für Mai 1952 anzukündigen. Aus Mai wurde der 1. Oktober, nach Rücksprache mit der Deutschen Bundespost mußte der Start auf Anfang Dezember verschoben werden ... die Dezi-Strecke kann nicht eher fertig werden ..., und heute nennt man als endgültigen Termin den 1.1.53.

Präsident Hertz, Chefingenieur der Deutschen Bundespost, stellte sich vor zehn Tagen in Hamburg den Journalisten auf einer Pressekonferenz des NWDR und warb um Verständnis dafür, daß "eine für Deutschland so neue Technik wie die Richtstrahl-Breitbandverbindungen notwendigerweise Verzögerungen mit sich bringen muß". Der neue Terminkalender nennt: Ende Juli Beginn der Einbauten der Richtstrahlanlagen (Telefunken) auf den Relaistürmen zwischen Hamburg und Hannover, Ende Dezember Beendigung aller Arbeiten bis Köln. Auf unsere Frage, ob in diesem letzten Termin das Einfahren der komplizierten technischen Einrichtungen eingeplant sei, antwortete Präsident Hertz: "Ja, und zwar sechs Wochen postalische Einmessungen und anschließend zwei Wochen für das Einpegeln und für Übertragungsversuche zusammen mit dem NWDR." Für die Weiterführung nach Frankfurt sind alle Vorbereitungen im Gange (Lorenz-Anlagen), so daß die Post den ursprünglich genannten Termin "März 1953" glaubt einhalten zu können. Frankfurt—Stuttgart—München und evtl. Nürnberg werden endgültig im April 1954, provisorisch aber wahrscheinlich schon im Herbst 1953, erreicht sein. Die Strecke ist umschaltbar, d. h. München wird dann ebensogut Programme nach Hamburg geben wie solche von dort empfangen können.

Vor einigen Wochen hub ein großes Tauziehen um die Frage an: "Soll der Fernsehsender Langenberg, der am 20. August fertig sein wird, das vom NWDR während der Funkausstellung in der Rheinhalle in Düsseldorf produzierte Fernsehprogramm ausstrahlen... oder soll es nur Kurzschlußbilder auf der Fernsehstraße in Halle 17 geben?" Die Rundfunkwirtschaft ist mehr oder weniger gegen eine Aussendung. Sie befürchtet, daß mit dem Ende der Funkausstellung auch das Ende des westdeutschen Programmbetriebes gekommen ist und anschließend die große Pause bis zum 1. Januar eintritt. Der NWDR wunscht im Gegensatz dazu die Sender Langenberg und etwas später Köln bis zum genannten Start einzufahren und plant gleichzeitig die Einrichtung von Fernsehstuben. Große Rundfunkhändler in den großen Städten des Rhein- und Ruhrgebietes sind ebenfalls dafür ... andere sind erklärte Gegner dieses Planes. Sehr erfreulich ist die Mitteilung, daß das bundesdeutsche Fernsehen eine Gemeinschaftsarbeit aller Rundfunkanstalten sein

wird. Wir werden eine fruchtbare Zusammenarbeit erleben mit dem Ziel, das Programm gemeinsam aus Beiträgen aller Sender zusammenzustellen. Dabei hat jede Rundfunkanstalt das Recht und die Möglichkeit, Ereignisse von lokalem Interesse nur auf den eigenen Sender zu übertragen. Ein finanzieller Ausgleich wird dafür sorgen, daß die Lasten der Programmproduktion gerecht und der Leistungsfähigkeit entsprechend verteilt werden. Man will täglich von 16 bis 17 und von 20 bis 22 Uhr senden und eine Teilnehmergebühr von 5 DM monatlich erheben.

Der NWDR stellte bekanntlich für die Geschäftsjahre 1952/53 und 1953/54 je 8,5 Mill. DM als Zuschuß zur Verfügung, so daß der Fernsehbetrieb auf alle Fälle gesichert ist. Diese Summe teilt sich jeweils wie folgt auf:

1952/53 5 Mill. DM für Investitionen, 3,5 Mill. DM für Programm, 1954/55 3,5 Mill. DM für Investitionen, 5 Mill. DM für Programm. Entsprechend der Planung werden die Sender der 1. Ausbaustufe (Hamburg, Langenberg je 10 kW, Hannover, Köln je 1 kW) am 1. Januar etwa 15,4 Mill. Menschen = 62 % der Bevölkerung im NWDR-Sendebereich die Möglichkeit bieten, Fernsehprogramme aufzunehmen.

Über die Lage Berlins auf dem Fernsehgebiet kann leider nur wenig gesagt werden. Noch immer sind die Verhandlungen um einen Berliner Sender, um Gebührenverteilung usw. nicht abgeschlossen. Die Fernseh-Relaisbrücke Berlin-Nikolassee—Höhbeck/Elbe wird im Herbst betriebsbereit sein und Berlin damit an die westdeutsche Programm-Sammelschiene anschließen.

Wenn diese Zeilen erscheinen, hat in Stockholm die Ultrakurzwellen-Konferenz begonnen. Das deutsche Fernsehen wird weiterhin im Band III (174 ... 216 MHz) verbleiben. Die hier zur Verfügung stehenden sechs Kanäle reichen aber für die Bundesrepublik und Westberlin nicht aus; es ist wenigstens noch ein zusätzlicher Kanal zu schaffen — und er kann nur in Band I (41 ... 68 MHz) gefunden werden. Leider gibt es dabei eine Schwierigkeit durch Besatzungs-Funkdienste, so daß wir diesen Kanal vielleicht nicht bekommen. Als Ausweg bietet sich der "Gutzmann-Plan" an. Bei diesem Sendeverfahren wird auf den Tonsender verzichtet, und man moduliert mit dem Ton die Breite der Zeilensynchronisier-Impulse. Vorteil: Das erforderliche Frequenzband je Fernsehsender wird schmaler, so daß man aus den sechs Kanälen zu je 7 MHz in Band III sieben oder gar acht machen kann. Nachteile: Es sind neue Sendertypen zu konstruieren und Änderungen an den Empfängern zu treffen, die Tonqualität leidet etwas durch die Einengung des NF-Spektrums. Damit ist dieses Verfahren als das gekennzeichnet, was es auch darstellen soll: der letzte Ausweg, falls wir nach Stockholm nicht genau wie die übrigen Länder Europas das Band I benutzen dürfen. Karl Tetzner

Stetige Weiterentwicklung – aber keine

Wer in Hannover auf den Ständen der elektrotechnischen Industrie — Fachrichtung Elektronik — nach sensationellen Neuheiten forschte, wird enttäuscht gewesen sein. Dafür bot Hannover eine Fülle der interessantesten Neuerungen und soliden Entwicklungen, das Zeichen einer Industrie, die wieder Anschluß gefunden hat und sich anschickt, erneut ihren alten Platz in der Spitzengruppe der Welt-Exporteure einzunehmen.

Außerdem ist der zeitliche Abstand von Messe zu Messe in diesem Stadium der Entwicklung zu kurz, als daß Sensationen gefunden werden könnten; diese reifen in der heutigen Zeit nicht so rasch. Und schließlich: Im August wird die Große Deutsche Rundfunk- und Fernsehausstellung sein, so daß genügend Gründe für eine gewisse Zurückhaltung vorhanden sind. Das war auch die Ursache für das Fehlen vieler Firmen, insbesondere der Fachrichtung Empfängerbau. Einige der in Hannover ausstellenden Großfirmen verzichteten zudem ganz betont auf das Ausstellen ihrer Rundfunk- und Fernsehgeräte.

Trotz dieser notwendigen Einschränkungen bot Hannover eine fast unübersehbare Fülle wichtiger und interessanter Geräte, Vorrichtungen und Einzelteile — so viele, daß sich nachstehender Bericht größter Konzentration befleißigen muß.

Rundfunk- und Fernsehempfänger

Hannover ist eine Exportmesse, so daß die Spezialempfänger für die Ausfuhr im Vordergrund standen. Sie wurden vorwiegend von jenen wendigen, kleineren Empfängerfabriken gezeigt, für die der Auslandsabsatz in einem welt größeren Umfange wichtig ist als für manchen Großen in der Branche, da sie ausschließlich Empfänger fertigen und der Inlandsabsatz nicht in allen Fällen ausreicht.

Die anwesenden Firmen konnten ein ziemlich lückenloses Exportprogramm aufweisen. Lückenlos soll heißen: Es können alle Wünsche der europäischen Abnehmer, der Kunden im Vorderen Orient und in Übersee erfüllt werden. Europa verlangt Modelle des innerdeutschen Marktes, jedoch ohne UKW (Ausnahmen: In der Schweiz und in Holland werden teils AM-, teils AM/FM-Super verlangt . . . je nach Lage zum nächsten UKW-Sender!). Der Vordere Orient kauft Netzempfänger und Batteriegeräte mit erweiterten Kurzwellenbereichen, aber unbedingt mit Langwelle (wegen der Sender Brasow/Rumänien und Ankara/Türkei), während für Übersee, insbesondere Indonesien und Südamerika, Geräte mit durchgehenden Kurz- und Grenzwellenbereichen (II... 185 m) sowie Mittelwellen in Frage kommen. Bezüglich Stromversorgung sind die Verhältnisse ähnlich vielfältig: Wechselstrom, Allstrom, Trokkenbatterien, 6,3-Volt-Starterbatterie mit Zerhacker. Schließlich ist die Frage "tropenfest — oder nicht?" zu beantworten; wenn "ja": Ist Termitengefahr vorhanden? Das ergibt einen bunten Strauß von Wünschen und entsprechend viele Modelle, die sich noch vermehren, wenn verschiedene

Preisklassen besetzt werden müssen. Nachstehend scllen einige der neuen Exportmodelle erwähnt werden: Akkord-Radio bereitet einen stationären Batterieempfänger MERIDIAN mit 6 Kreisen, HF-Vorstufe, Holzgehäuse und 6 Röhren der D-91-Serie vor. Graetz erweiterte seine Exportserie (vgl. FUNK-TECHNIK Bd. 7 [1952], H. 1, S. 8) um zwei tropenfeste Modelle "155 WT" (7 Kreise, Wechselstromanschluß, 13 ... 42,8, 41,6 ... 140, 185 ... 589 m, 6 Röhren) und "260 WT" (6 Kreise, Wechselstrom-anschluß, 11 ... 27, 27 ... 55, 55 ... 185, 185 ... 588 m). Beide Geräte haben ein Holzgehäuse in der Graetz-Form, das mittels Spezialbehandlung in jeder Hinsicht tropenfest ist. EMUD fertigt als einzige Firma Das Modell FAVORIT einen Export-Einkreiser: GW mit UF 11, UL 2 und Selengleichrichter hat folgende Bereiche: 13 ... 40, 40 ... 130, 176 ... 500 und 800 ... 2000 m. Außerdem sind die Super und 800 ... 2000 m. Außerdem sind die Super "561 GW, M/GW", "781 MW" und "Record-Super S/GW" mit Ubersee-Wellenbereichen unter Verzicht auf Langwellen lieferbar.

Zielsicher "auf Preis" ist bei Jotha der EXPORT 642 W3K konstruiert: 4 Röhren (ECH 42, EAF 42, ECL 113 und AZ 41); Bereiche 16,6 ... 55, 45 ... 150, 177 ... 590 m; kleines Preßgehäuse; Gewicht nur 3,8 kg — letzteres ist eine für den Export oftmals wichtige Eigenschaft. Nora präsentierte mit dem NORAVOX W 676 "Bandspread" eine Neuheit: 6 Röhren (ECH 42, EF 85, EBF 80, EL 41, EM 5, AZ 41); 6 Kreise und sie ben Wellenbereiche — durchgehend von 10,9 bis 588 m —; fünfstufige Klangregelung und eine Mindestempfindlichkeit von 5 μ V auf allen Bändern dank der steilen ZF-Röhre schufen einen Hochleistungsempfänger. Er hat Preßgehäuse und eine kolorierte Tropenskala mit Mattglasstreifen für die handschriftliche Eintragung der Sender. Je eine Allstrom- und

Batterieausführung ist in Vorbereitung. Weitere Nora-Exportsuper sind die Modelle "W 655", W 755" und "GW 755" für Netz- und "B 664" für Batteriebetrieb. Sädlunk stellte die Modelle ULTRA 6 und ULTRA 8 aus, die in vier Versionen geliefert werden: I und II nur für AM, III und IV für AM/FM. Tonlunk fertigt für das Ausland die Modelle "W 200 KK / W 200 MKK", "B 200", "B 200 V", "W 250 KK, "W 250 V" und "B 250". Die "KK-Typen" besitzen unterteilte KW-Bereiche und die "B-Modelle" D-11-Röhren mit Trockenbatterieanschlüssen, während die "V-Ausführungen" einen eingesetzten Vibrätor zum Betrieb aus Starterbatterien enthalten. Sie werden gern von Farmern im zentralen und südlichen Afrika erworben. WEGA zeigte den Spezial-Exportsuper SAMBA mit 3× Kurzwelle, Mittelwelle und Stahlröhren im Preßstoffgehäuse mit einer nach Mc, Kc und Metern geeichten Skala.

Unter den neuen Empfängern für den innerdeutschen Markt, die in Hannover z. T. erstmalig gezeigt wurden, fielen u. a., folgende Typen auf von Akkord-Radio der neue Klein-Reiseempfänger "Offenbach-M", von Braun der 7-Kreis-6-Röhren-Reisesuper "Commodore" und der Braun-Piccolino 52 B". Viel beachtet wurde der Jotha "Trumpf 52", ein Einkreiser mit UKW (UCF 12, UL 41, UY 41), der in etwas anderem Aufbau bereits zur Funkausstellung 1950 angekündigt war. Wandel & Goltermann hat seinen Autosuper "Zikade" um einige Spezialmodelle erweitert: für Mercedes 170 S und für VW sowie eine einfache Universalausführung Typ II/M/4 nufür Mittelwelle. WEGA stellt neben dem FOX R (vgl. FUNK-TECHNIK Bd. 7 [1952], H. 9, S. 228) jetzt noch das Modell FOX RP her, d. h. den FOX R ohne Magisches Auge und im Preßstoffgehäuse.

Fernsehempfänger gab es nur auf drei Ständen zu sehen, obwohl sich fünf Firmen angemeldet hatten. Graetz zeigte — nicht in Betrieb — die Truhe "F 2" und das Tischgerät "F 3", über deren technischen Einzelheiten wir bereits berichteten. Nora stellte seine beiden bekannten Geräte LUX und LUMEN aus, während das TeKaDeStandgerät (6 Bildkanäle und UKW) über einen eigenen, auf dem Stand aufgebauten Dia-Gebessehr helle und kontrastreiche Bilder vorführte.

Tonaufzeichnung

Die Büromittelschau in den Hallen 19 uns hielt nicht weniger als ein volles Durschiedener Diktiergeräte mit Draht, Bastischen Scheiben und magnetischen Pesowie Plastikmanschetten. Wir werde heiten in einem besonderen Beitrag dabei die neuen Modelle aus Deutsund den USA vorstellen.

Tonbandgeräte für den Heimgeneten einige Neuerungen. Die

Bitte nicht verwechseln!

Wie wir erfahren, soll demnächst in einem volkseigenen Verlag in Leipzig eine funktechnische Zeitschrift mit einem der FUNK-TECHNIK ähnlichen Titel herauskommen. Wir machen unsere Leser der Verwechselungsgefahr wegen darauf aufmerksam, daß unser Verlag mit der Herausgabe der neuen Zeitschrift in keinerlei Zusammenhang steht. Die FUNK-TECHNIK, die seit 1946 besteht, erscheint monatlich zweimal im VERLAG FÜR RADIO-FOTO-KINOTECHNIK GMBH, Berlin-Borsigwalde

sensationellen Neuheiten

Koffermagnetophon "KL 15", das erstmalig im Oktober 1951 in Berlin zur Industrieausstellung vorgeführt wurde, jetzt mit Verstärker und Lautsprecher im Deckel aus, so daß es unabhängig von jedem Rundfunkempfänger betrieben werden kann. Es heißt nunmehr "KL 15/D". Die Radio-Magnetophon-Kombination "Univox Junior" der AFG wurde bereits in der FUNK-TECHNIK Bd. 7 [1952], H. 7, S. 228 erwähnt. Für Rundfunkzwecke ist die Studiomaschine "T 9" entwickelt worden; sie ist den Erfordernissen des UKW-Rundfunks angepaßt (Frequenzbereich 40... 15 000 Hz, k = kleiner als 0,5% bei 1000 Hz, Störspannung —60 db). Die drei Köpfe können ohne Abnahme des Kopfträgers justiert werden. Neu ist eine Cutter-Vorrichtung, die Schneiden und Kleben des Bandes ohne Herausnahme der Spulen und des Bandes ermöglicht.

der interessantesten Konstruktionen — nicht zuletzt wegen seines niedrigen Preises. In einem
flachen und handlichen Preßstoffkoffer ist ein
Plattenspieler für zwei Geschwindigkeiten (78 und
33½ U/min) eingesetzt, der ungefähr dem Chassis
2978 entspricht. Im Tonarm aus elfenbeinfarbenem
Philite sitzt ein Kristallelement mit umschaltbaren
Safiren. Der geringe Auflagedruck von nur 7 g
wird ohne Entlastungsfeder oder Ausgleichgewicht
erreicht! Der Fonokoffer wird sich, wenn wir uns
nicht sehr täuschen, gut einführen, denn er entspricht einem Bedürfnis: Viele Rundfunkhörer
wünschen sich einen Plattenspieler, den man nach
Gebrauch "wegstellen" kann.

Für den Alltouren-Plattenspieler von Wumo, Typ 454, mit Steuerung der Umdrehungszahl durch einen Fliehkraftregler wurde ein neuartiger "schwimmender" Plattenteller entwickelt, der die

180 Grad gedreht werden, so daß jeweils das "richtige" Ende des Kopfes mit passendem Safir für das abzuspielende Rillenprofil vorn steht. Der Frequenzbereich ist 30 ... 12 000 Hz, der Auflagedruck 8 g und die abgegebene Spannung 1,4 Veff an 0,5 MOhm bei 1 kHz und 26 mm Lbb. TeKaDe will in Zukunft wieder aktiver auf dem Tekade will in Zukunft wieder aktiver auf dem Ela-Gebiet in Erscheinung treten. Erste Proben waren ein kleiner 75-Watt-Verstärker, voll über-blendbar, und eine transportable Verstärker-anlage (20 Watt, mit Plattenspieler, Mikrofon, Uberblender, Reglern usw.), wahlweise am Wechselstromnetz oder an einer 6-Volt-Batterie anschließbar. Die Anlage ist klein und mit 25 kg nicht zu schwer; sie zaubert aus einem PKW zusammen mit einem Druckkammerlautsprecher Handumdrehen einen Lautsprecherwagen. Wennebostel bringt in der Reihe seiner Stand-mikrofone mit akustischer Rohrleitung zum dynamischen System im Fuß eine "Studioausführung" mit trichterförmiger, kleiner Einsprechöffnung heraus, deren Frequenzbereich nach oben bis über 10 000 Hz erweitert wurde. Weiterhin sei auf den unwahrscheinlich kleinen 15-Watt-Verstärker verwiesen, der auch in der Koffer-Übertragungsanlage steckt (sie klingt übrigens bestechend gut) und auf die gleichgroße 80-Watt-Endstufe "VK 801" (Maße: 40×12×16 cm!). Letztere gibt ihre Nenn-

Tonabnehmerkopf mit Kristallsystem kann um

Sehr flacher Dreigeschwindigkeits - Plattenspieler mit umschalfbarem Tonabnehmerkopf (Apparatewerk Bayern GmbH, Dachau)

Der handliche Philips-Phonokoffer für zwei Geschwindigkeiten (s. unten) braucht wenig Platz und läßt sich schnell an jedes Rundfunkgerät anschließen

Ganz neu ist das einfache und billige "Volkstonbandgerät WERIFON" mit folgenden Daten: Bandgeschwindigkeit 19,05 cm/s, Einspurband, Frequenzbereich 50 ... 8000 Hz ± 4 db. Ein einziger Kopfübernimmt Aufsprechen, Abnehmen und die "Tiefen-Vormagnetisierung mit Simultanlöschung". Die Lösch- bzw. Vormagnetisierungsfrequenz liegtbei 9,8 kHz, anscheinend aber werden die Harmonischen dieser niedrigen Frequenz ausgenützt. Das 180-m-Band läuft 15 min und die Rückspulgeschwindigkeit ist 15fach. Interessant ist die Bandführung, die das Tonband nicht eng anliegend am Kopf vorbeizieht, sondern nur gerade hauchdünn berührend; daher wird der Kopf kaum abgenützt und der Bandzug bleibt gering. Röhren: ECC 40, EF 40, AZ 41; e in Motor; Eingangsspannungsbedarf 35 Veff an 10 kOhm; Schallplattenteller und Tonarm aufsetzbar.

Max Ihle zeigte das PHONO-REX-Tonbandgerät, u. a. auch in einer Kofferausführung mit eingebautem Lautsprecher. Daten: 19,05 cm/s, Doppelspur, 2×30 bzw. 2×60 Minuten Aufnahmedauer, Frequenzumfang 30... 10 000 Hz, Fremdspannung —45 db.

Fonogeräte, Mikrofone

Einige der Hauptproduzenten aus der Fonoindustrie fehlten, darunter bis auf eine Ausnahme alle Schallplattenfabriken; man wird die Neuheiten dieser Unternehmungen also erst zur Funkausstellung vorgesetzt bekommen.

Die Zahl der guten Mehrtouren-Chassis hat erfreulich zugenommen. Einige Konstruktionen sind sehr gelungen und bieten für relativ wenig Geld sehr viel. Unter den ausgestellten Geräten war der Philips-Fonokoffer Typ 2102 unzweifelhaft eine Ubertragung von Rumpelerschütterungen vom Motor auf die Schallplatte verhindert — wie es beispielsweise bei Langspielplatten dringend notwendig ist. Beim Wumo-Plattenspieler saß bisher der Teller direkt ohne Zwischenstück oder Übertragungsrollen — wie bei fast allen anderen Chassis — auf der Motorachse. Die neue Vorrichtung besteht aus einem kleinen Teller, der nach wie vor starr auf der Achse sitzt, und dem größeren, eigentlichen Plattenteller, der auf dem kleinen über eine federnde Gummizwischenlage befestigt ist. Mittels Fliehkraftregler können alle Umdrehungszahlen zwischen 30 und 80 U/min eingestellt werden.

Neu ist ein sehr flaches, kleines Dreitouren-Chassis vom Apparatewerk Dachau. Es erfordert keine Bohrung mehr in der Truhe oder Schatulle; man befestigt einen schmalen Bügel und auf diesem mit zwei kleinen Schrauben den Plattenspieler. Rechts im leicht erhöhten Teil befindet sich der Wechselstrommotor; er treibt den Teller über umschaltbare Reibräder an. Der "Tandem"-

Neuer Isophon - Hochtonlautsprecher H 13/12/110

leistung bei 5% Klirrfaktor ab. Neu ist ferner ein Kabelübertrager "Tr 50° (U = 1:30) für den beweglichen Einsatz von dynamischen Mikrofonen, ausgerüstet mit Tuchel-Stecker.

Unter den zahlreichen mehr oder weniger bekannten Lautsprechermodellen sei das neue Hochtonchassis "H 13/12/110" von Isophon erwähnt, mit 13 cm Durchmesser und einer Einbautiefe von 123 mm. Die Teilerfrequenz liegt bei rund 3 kHz, die oberste Grenzfrequenz bei etwa 16 kHz und die maximale Belastung bei 10 Watt. Als Weiche dient ein fest am Lautsprecher montierter Kondensator von 4µF. Philips zeigte eine Reihe von Lautsprechern mit Ferroxdure-Magneten, die wesentlich kleiner sind als etwa Ticonal-Magnete gleicher Leistung, sonst aber zumindest in dieser Anwendung gleiche Eigenschaften aufweisen.

Bemerkenswert war ein neues Heimmikrofon von ROKA mit Kristallsystem und einem eingebauten Verstärker. Dank der Anwendung von Hörhilfe-Röhren (2 × DF 67) und entsprechenden Batterien kann der Verstärker. im kleinen Mikrofongehäuse Platz finden. Vorzüge dieser Konstruktion ist nicht nur die hohe Spannungsabgabe (100 mV/µb), sondern vor allem die Möglichkeit, durch Gegenkopplung usw. die Frequenzkurve "auszubügeln", die nunmehr weitgehend geradlinig zwischen 50

und 10 000 Hz verläuft. — Erwähnt sei ferner ein ganz billiges. Kohlekörnermikrofon von Dalmon in einem Taschenlampengehäuse. Es kann mit seiner 100 cm langen Zuleitung an jedem Rundfunkempfänger angeschlossen werden und besitzt einen Druckkontakt in der Form, daß die Batterie und damit das Mikrofon nur dann eingeschaltet sind, wenn dieser Knopf gedrückt wird. H. Peiker stellte eine ganze Serie Kristallmikrofone in allen Preisklassen aus, darunter das hochwertige Modell PM 31 für Konzertübertragungen (Frequenzverlauf zwischen 20 und 14 000 Hz ± 3 db, Empfindlichkeit 5,5 mV/µb bei 1 kHz).

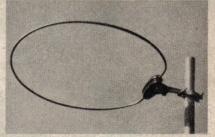
Zahlreiche Firmen zeigten Wechsel- und Gegeneinige Telefonverstärker. sprechanlagen sowie Das Fabrikat von Surholt erfordert eine direkte elektrische Verbindung zum Telefonapparat, mußte daher von der Deutschen Bundespost amtlich zugelassen werden (Reg.-Nr. 655), während das neue "Jothaphon" von J. Hüngerle nach folgendem Prinzip arbeitet: Der Handhörer des Telefons wird auf die Oberseite des Verstärkers gelegt, so daß die Hörermuschel einem empfindlichen Mikrofon und die Einsprechöffnung einem kleinen Laut-sprecher gegenüberliegen. Die leisen Sprachschwingungen werden verstärkt über einen grö-Beren Lautsprecher wiedergegeben, und die frei in den Raum gesprochenen Worte des Benutzers werden ebenfalls verstärkt der Einsprechöffnung zugeführt. Dadurch ist Telefonieren mit Verstärkung ohne Behinderung möglich, d. h. der Sprechende hat beide Hände frei. Diese Anlage, die übrigens auch mit eingebautem Rundfunkgerät — Einkreiser — lieferbar ist, benötigt keine Zulassung durch die Bundespost.

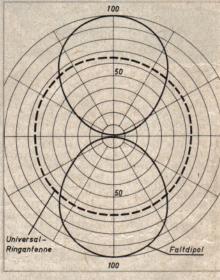
Kleinfunk- und Schiffsfunk-Anlagen

Das Angebot neuer Kleinfunkanlagen nimmt dem Bedarf entsprechend zu. Telefunken demonstrierte seine Anlagen (10-Watt-Gerät und "Teleport II") durch den erfolgreichen Polizeieinsatz für die Verkehrsregelung auf dem Messegelände und zwischen Laatzen und dem Stadtzentrum sehr glücklich. Die C. Lorenz AG zeigte auf ihrem Stand in Halle 9 die beiden in ihrer Leistung etwas verschiedenen, tragbaren Geräte "KL 2" "KL 4" (beide u. a. für den Frequenzbereich 156 bis 174 MHz, für drei oder sechs schaltbare Frequenzen innerhalb dieses Bandes mit je 100 kHz Kanalabstand) und die Versuchsausführung einer neuen, relativ billigen Fahrzeuganlage "SEM". Technisch ungemein interessant, aber im Rahmen dieser Ubersicht auch nicht annähernd zu beschreiben ist die neue Kurzwellen-Empfangsanlage 6 P 160" der C. Lorenz AG für den Kurzwellen-Uberseedienst der Deutschen Bundespost. Die Anlage, untergebracht in zwei Schränken, ist eingerichtet für A 1, A 2, A 3, Bildfunk (A 4), Frequenzumtastung (F 1) und F 1-Zweikanal (Duoplex bzw. Twinplex) im Frequenzbereich 3... 30 MHz. Die Bandbreite für Telegrafieempfang ist regelbar zwischen 300 und 1600 Hz mittels umschaltbarer Quarzfilter, während sie bei Telefonie auf 7 kHz fest eingestellt ist. Die Empfindlichkeit wird mit 0,5 µV angegeben, wobei bereits ein Störabstand von 20 db erreicht wird. Die Himmel-Werke haben unter der Bezeichnung

Die Himmel-Werke haben unter der Bezeichnung FuG 200° eine kleine Fahrzeuganlage mit nur 3 Watt Senderleistung herausgebracht. Sie arbeitet im 2-, 4- und 7-m-Band mit FM, Hub ± 15 kHz, Mcdulationsfrequenz entsprechend der Sprachübertragung 300 ... 4000 Hz, Kanalabstand 100 kHz. Der eingebaute Empfänger erreicht einen Rauschabstand von 1:20 bereits bei 0,5 µV Eingangsspännung, d. h. die relativ geringe Senderleistung wird durch eine hochgezüchtete Empfängerempfindlichkeit kompensiert.

Mit dem Telefunken "Teleport 3" regelte die Polizei den Verkehr auf der Hannoverschen Messe

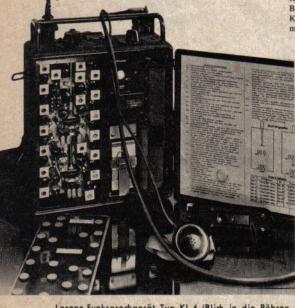

Auf dem Stand der Land- und See-Leichtbaugesellschaft mbH, Neumünster, fanden wir eine Reihe tragbarer Kleinfunkgeräte und stationärer Funkanlagen. Das Handfunktelefon "HFT 0,5 W" ist für den Verkehr im 144-MHz-Amateurband bestimmt (Daten: zwei Batterietrioden im Gegentakt, AM—nach Heising; Heizspannung 1,4 Volt; Anoden-Kleinstbatterie von 63 Volt; Sendeleistung 0,5 Watt; Gewicht 1,35 kg). Ein Reportagesender arbeitet im Grenzwellenbereich, ist ziemlich leicht, zum Umhängen gebaut und soll dem Seelotsen direkten Funksprechverkehr mit Schiffs- und Landfunkstationen ermöglichen. Weiterhin wurde eine Serie von Bordstationen mit 15 bis 60 Watt Antennenleistung gezeigt, wobei die Sender sämtlich für die Grenzwellen ausgelegt und die Empfänger für Allwellen konstruiert sind.


Bemerkenswert in ihrer Konstruktion waren die Kleinfunkgeräte der Firma Otto Vierling, Ebermannstadt. Die kleinste Anlage ist die "Minivox 1" mit zwei Schwerhörigen-Pentoden in Gegentakt, Hörbilfe-Batterien als Stromquellen und einer Ausgangsleistung von 10 mW. Die Besprechung erfolgt über die oben im Gerät eingebaute Kondensatormikrofonkapsel. Weitere Geräte besaßen kleine Netzteile, andere wiederum zwei "Silberkraft"-Leichtakkus.

Fernseh- und UKW-Antennen

Die fast lückenlos vertretenen Antennenfabriken zeigten einige interessante Neuheiten. Fast alle hatten wenigstens ein Muster einer "Lopik-Antenne" ausgestellt, bestimmt zur Aufnahme des holländischen Fernsehsenders Lopik in Westdeutschland. Entsprechend der längeren Welle (rund 4,9 m) sind diese Gebilde mit 2,5 m Länge für unsere Begriffe recht groß.

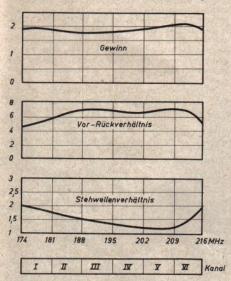
für unsere Begriffe recht groß. Eine sehr beachtenswerte Neuheit ist die "Akorrid-Antenne" von Robert Karst, Berlin, deren Metallteile zum Schutz gegen Korrosion mit einem aufgeschrumpften, thermoplastischen Schutzmantel überzogen sind. Wer einmal UKW-Antennen vom Dach genommen hat, die ein Jahr oder länger der Witterung und den Schornsteinabgasen ausgesetzt waren, wird die Notwendigkeit eines zusätzlichen Schutzes verstehen. Die elektrischen Eigenschaften werden selbstverständlich nicht verändert, vielmehr auf nahezu unbegrenzte Zeit konserviert, denn die Oberfläche der Antenne bleibt unter dem Schutzmantel stets metallisch blank. — Als Neuheit liefert ROKA außerdem eine V-förmige Fernseh-Zimmerantenne und eine Schmetterlingsantenne für Fernseh-Rundempfang mit 60 Ohm Fußpunktwiderstand. Auf dem Lieferprogramm von Engels stehen alle Typen Fernsehantennen vom ein-



Hirschmann-Universal-Ringantenne "Ura" mit Richtdiagramm

fachen Schleifendipol bis zum gestockten 6-Element-Dipol und der Fensterantenne. Neu sind Zweifach-Runddipol-Antennen mit einer gewissen Bündelung in der Horizontalen (240 Ohm Fußpunktwiderstand). Eine ähnliche Anordnung bietet Kathrein als Unterdachdipol. Die gleiche Firma zeigte ein erstes Muster einer UKW-Autoantenne und eine Stahlband-Kofferantenne.

Eine dritte Runddipol-Antenne wird von Hirschmann erzeugt, die "Ura" 20, 40 oder 60. Sie besitzt zwischen Kabelarmatur und Ringdipol ein Transformationsstück in Form von zwei parallelen Rohren von rund 1 m Länge. Damit wird zweierlei erreicht: Der Dipol wird breitbandiger und die wirksame Antennenhöhe des Ringes gegenüber


Lorenz-Funksprechgerät Typ KL 4 (Blick in die Röhrenseite mit Sammler) Rechts: Kleinstfunksprechgerät "Minivox 1" von O. Vierling (im linken Bild ist das Oberteil geöffnet, beide Hörhilfe-"Sende-"Röhren sind sichtbar; als Stromquelle dient eine Hörhilfebatterie

dem Tragmast wächst, so daß insbesondere der Mittelwellenempfang (für den die Rundantenne gut geeignet ist) besser wird.

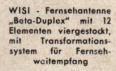
gut geeignet ist) besser wird.

Der Schwerpunkt der Entwicklungsarbeiten bei Fernsehantennen lag im abgelaufenen Halbjahr bei scharf bündelnden Viel-Element-Antennen — immer unter dem Eindruck, daß wir in Deutschland wegen Sendermangels anfangs viel Wert auf Fernseh-Weitempfang legen müssen. Bereits heute steht eine Reihe gestockter Dipole zur Verfügung, deren Vor-/Rück-Verhältnis sehr günstig ist und die Nebeneinstrahlungen weitgehend vermeidet. Unsere Kurven lassen die Kenndaten der "Fesa 200" von Hirschmann erkennen, die allerdings ein einfacher Faltdipol mit Reflektor und Direktor ist und daher das gesamte Band 174 bis 216 MHz bestreicht. Modell "Fesa 600" ist dagegen ein Vierstock-Dipol mit acht Elementen (jeweils Faltdipol mit Reflektor) und folgenden Daten: Gewinn gegenüber Einfachdipol 13 db. Vor-/Rück-Verhältnis etwa 1:8, Fußpunktwiderstand 300 Ohm; es ist recht schmalbandig und

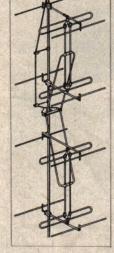
eigentlich nur für einen Kanal zu verwenden. Billig sind diese Gebilde allerdings nicht. Übrigens eireicht der Vierstock-Dipol mit acht oder zwölf Elementen bereits die Grenze der Wirtschaftlichkeit: Noch mehr Elemente bzw. "Stockwerke" bringen im Verhältnis zum Erreichten nur noch einen geringen zusätzlichen Gewinn an Antennenspannung.

Ähnliche Mehrstockantennen liefert WISI, z. B. die als Bild gezeigte "Beta-Duplex" mit zwölf Elementen in vier Etagen. Die gleiche Firma stellt Fernseh-UKW-Antennen her, wobei der UKW-Teil entweder als Runddipol oder als Richtantenne ausgebildet ist.

Auch Sandvoss hat ein umfangreiches Fernsehantennen-Programm entwickelt. Die TELO 4-Element-Fernsehantenne "500° wird in drei Ausführungen für die verschiedenen Kanäle hergestellt. Der Fußpunktwiderstand ist 60 Ohm und der Spannungsgewinn 8 bis 10 db. Diese Antenne ist für die TELO-Allwellen-Gemeinschaftsanlage vorgesehen und als Einzelantenne für Gebiete gedacht, die eine verhältnismäßig geringe Feldstärke besitzen. Die Ausführung "501", bei der die Breitbandeigenschaft außerordentlich günstig ist, bringt auf allen sechs Kanälen guten Empfang. Auch dort ist der Fußpunktwiderstand 60 Ohm und der Spannungsgewinn etwa 5 db. Verlängert man die Elementeabstände, dann ist auch der Anschlußeines 300-Ohm-Kabels möglich. Die TELO 2-Element-Fernsehantenne "502", ebenfalls für alle sechs Kanäle, bringt einen Spannungsgewinn von etwa 4 db. Alle Fernsehantennen sind mit Anschlußdosen am Dipol versehen. Auf besondere Anforderung steht eine Lopik-Fernsehantenne für die westlichen Bundesgebiete zur Verfügung.


Schließlich sei auf einige Muster von "elektroautomatischen Autoantennen" verwiesen, die von
Hirschmann, Kathrein und WISI gezeigt wurden.
Es Mandelt sich um ausfahrbare Teleskopantennen,
die beim Einschalten des Autosupers wie von
Zauberhand bewegt aus der Karosserie emporwachsen. Sie werden von einem kleinen, batteriegespeisten Elektromotor angetrieben, der die
Antenne beim Ausschalten des Empfängers auch
wieder hereinzieht, so daß die Antennen tafsächlich nur während des Empfanges "draußen" sind.
Natürlich sind diese Gebilde nicht billig: Wir

hörten Preise zwischen 120° und 190 DM, die jedoch immer im Verhältnis zum Anschaffungspreis eines neuen PKW zu betrachten sind und damit viel von ihrer Höhe verlieren.


Sondergeräte

Elektronische Einrichtungen dringen in der Schifffahrt immer stärker vor — nicht nur in Form von Nachrichten- und Navigationsgeräten. Die Firma Electroacustic, Kiel, auch als Produzent eines guten Plattenwechslers und von Kristall-Safir-Patronen für Tonarme bekannt, genießt in Kreisen der Schiffahrt einen guten Ruf wegen ihrer elektronischen Schiffsgeräte. Ihr besonders interessantes Erzeugnis, die Elac-"Fischlupe", hatten wir als erste Zeitschrift bereits vor über einem Jahr beschrieben (vgl. FUNK-TECHNIK Bd. 6 [1951], H. 3). Inzwischen sind weitere Geräte teils neu, teils weiterentwickelt worden: eine preis-

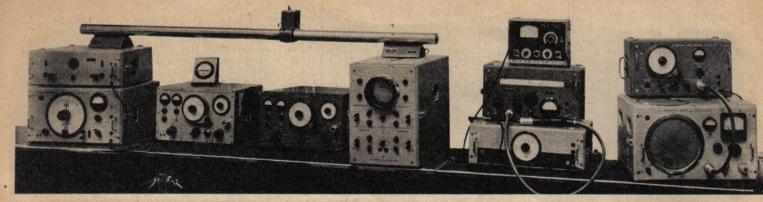
Kenndaten der "Fesa 200" von Hirschmann (Faltdipol mit Reflektor und Direktor)

Dynamisches Mikrofon mit abgenommenem Schutzdeckel des "Überholmelders" der ELAC

günstige Echolotanlage "Echoskop" für kleinere Fahrzeuge mit zwei Meßbereichen (0... 60 und 0... 300 m) und das "Lichtzeigerlot", ein sehr zuverlässiges Ultraschall-Lot für maximal 1000 m Wassertiefe, das nicht nur die Tiefe unter dem Schiffsrumpf anzeigt, sondern auch Fischschwärme, Plankton, Wracks, Felsen usw. mit Hilfe eines Zusatzgerätes "Echograph" auf einem laufenden Papierstreifen registriert. Die Lotung erfolgt mit Schall von 30 kHz, die Lotfolge ist 4,16/s im Bereich 0... 200 m bzw. 0,83/s im Bereich 0... 1000 m. Neu ist ferner eine für Bordverhältnisse konstruierte Wechselsprechanlage, die es der Schiffsführung ermöglicht, mit allen wichtigen Stellen des Schiffes sofortige Wechselsprechverbindung aufzunehmen.

Von besonderem Interesse ist der neue Elac-"Überholmelder" für Lastkraftwagen. Jedem Kraftfahrer ist bekannt, wie schwierig manchmal der Führer eines Lastzuges beim Überholen zum Aus-

weichen zu veranlassen ist - fast immer, weil dieser das akustische Hupsignal in seinem lärm-erfüllten Fahrerhaus nicht hören kann. Mit dem "Überholmelder" dürfte man der Lösung dieses Problems nahe gerückt sein. Am hinteren Ende des Lastzuges, also meist am Anhänger, wird ein dynamisches Spezialmikrofon in wasser- und schmutzdichter Ausführung angebracht, das den Ton der Tellerhupen (z. B. Boschhorn) bevorzugt aufninmt und einem zweistufigen, mit Rimlockröhren bestückten, sehr kleinen Verstärker weitergibt. Am Ausgang des Verstärkers liegt eine Schnarre; sie spricht an, sobald im Umkreis von 30 m hinter dem Mikrofon eine Tellerhupe ertönt. Der Be-trieb des Verstärkers erfolgt direkt, d. h. ohne Zerhacker usw., aus der 12-Volt-Batterie des Lastwagens. Eine direkte Übertragung des Hupentons über Verstärker und Lautsprecher in das Fahrerhaus verbietet sich von selbst, denn die Belastung des Fahrers durch die pausenlose Beschallung mit allen jenen Geräuschen, die das Mikro aufnimmt, wäre unerträglich und würde doch nur zur Abschaltung der Anlage führen. Daher scheint der indirekte Weg der Hupen-meldung als der einzig mögliche. Die Formgebung des Mikrofons und der genau abgestimmte Frequenzgang des Verstärkers bevorzugen das Hupensignal so eindeutig, daß Fehlmeldungen andere Geräusche, wie Auspuff, Steinschlag usw. ausgeschaltet sind.


(In unserem nächsten Heft folgt ein abschließender Bericht über Neuentwicklungen auf dem Gebiet der Bauelemente.)

Meßgeräte

Die Bedeutung, die den Mcßgeräten im Rahmen der gesamten Elektrotechnik zukommt, steht eindeutig fest. Es gibt heute praktisch kaum einen Vorgang, der nicht durch Mcßinstrumente angezeigt oder sonst irgendwie mcßtechnisch erfaßt wird. Die HF-Mcßtechnik und auch die NF-Mcßtechnik müssen sich zwangsläufig den neuen Bedingungen anpassen. Das macht immer wieder Verbesserungen, Erweiterungen der Bereiche und Verfeinerung der Mcßverfahren notwendig.

Das große und vielseitige Angebot auf der Technischen Messe Hannover gab einen sehr aufschlußreichen und eindrucksvollen Querschnitt über den Stand der deutschen Meßinstrumente, d. h. der deutschen Meßtechnik. Führende Firmen, wie AEG, Brown, Boveri & Cie., Gossen, Hartmann & Braun, Metrawatt, Neuberger, Siemens usw., zeigten Ausschnitte aus ihrem fast lückenlosen Programm, das vor allem den Starkstromtechniker essierte. Aber auch der HF-Techniker fand wieder eine reiche Auswahl interessanter Konstruktionen auf dem Gebiet der Zentimeter- und UKW-Meßtechnik. Das Fernsehen erfordert bei den Fabriken. die FS-Geräte entwickeln und bauen, eine Reihe von vorzüglichen und exakten Meßinstrumenten. Aber auch der Service-Mann, d. h. der Rundfunk-Mechanikermeister bzw. das Fachgeschäft, das sich mit dem Verkauf von Fernsehgeräten beschäftigt, benötigt Meßplätze, um die anfallenden leichteren Mängel und Fehler selbst abstellen zu können. der Vielzahl des Angebotenen mögen nur einige wenige Fabrikate herausgehoben werden, da es einfach unmöglich ist, alle eingehend zu

In der ebenfalls in unserem Verlage erscheinenden Zeitschrift FUNK UND TON, Bd. 6 [1952], H. 4, S. 169, veröffentlichen wir einen Beitrag über das Messen von Tonhöhenschwankungen. Das Gerät wird von der Elektromeßtechnik Wilhelm Franz KG in Lahr/Schwarzwald hergestellt. Das direkt anzeigende Ohmmeter "EMT 321" dieser Firma zur Prüfung von Widerständen zwischen 10 mOhm und 100 mOhm bei kleinster Belastung des Prüflings dürfte ebenfalls viele Interessenten finden. Es besitzt einen großen Meßumfang, kleinen Leistungsumsatz im Meßobjekt und läßt sich sicher und einfach bedienen. Gerade die Reichweite bis zu 10 mOhm bietet die Möglichkeit, sehr ohmige Widerstände zu messen. Alle Meßergebnisse liest man unmittelbar an der Skala ab. Auch das direkt anzeigende mOhmmeter "EMT 324" zum Messen von niederohmigen Widerständen zwischen 50 μ Ohm und 300 mOhm wird sich bei der Materialuntersuchung, wo es z. B. darauf ankommt, Ubergangswiderstände an Kontakten zu prüfen. resch einbürgern. Neben diesen beiden Geräten fielen der Hochspannungsprüfstand "EMT 120" 5 kV Gleich- und Wechselspannung und das Toleranz-Meßgerät für Kondensatoren "EMT 508" Prüfung von statischen Kondensatoren auf. Sehr

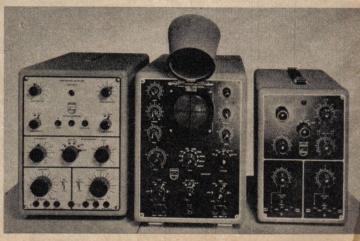
UKW - Meßplatz von Rohde & Schwarz, rechts außen Impedanzmesser mit einer Anzeigescheibe aus Mattglas mit mehreren auswechselbaren Diagrammen

6- bis 60-cm-Meßplatz der Federmann GmbH

interessant ist die Schallplatten-Abspielmaschine für Studioeinsatz R 80, die einen äußerst exakten Aufbau aufweist.

Das HF-technische Entwicklungslabor Dr.-Ing. Günther Häberlein, München, und die Dipl.-Ing. W. Federmann GmbH in Stuttgart stellten auf ihrem gemeinsamen Stand eine Reihe von hochwertigen Oszillografen sowie einen Dezimeterwellen-Meßplatz mit Sichtanzeige aus. Bei den Fabrikaten der Firma Häberlein wurde besonderer Wert auf solide Bauweise, ausgereifte Konstruktion und beste Bauteile gelegt; vieles ist im Baustein-Prinzip hergestellt und läßt sich daher zu geeigneten Meßplätzen zu-sammenstellen. Der Schwebungssummer "HSS hat z. B. einen Frequenzbereich von 0 Hz bis 20 kHz in Grob- und Feinstellbereiche unter-teilt. Die Grobeinstellung arbeitet mit einer Raste-rung von kHz zu kHz, während die Feineinstellung von 0 bis 1 kHz reicht. Der Frequenzgang ist linear. Zur Ausgangsspannungskontrolle ist ein Röhrenvoltmeter 20 mV bis 25 V vorgesehen. Die Abweichung der Ausgangsspannungsanzeige ist < 2 %, die Frequenzungenauigkeit < 1 %. In dem großen Katodenstrahl-Oszillografen "HOZ 16/1" ist eine 16-cm-Schirmröhre eingebaut; das Kippgerät überstreicht den Bereich von 7 Hz bis 200 kHz synimetrisch. Die Empfindlichkeit des zweistufigen mit Gegentaktendstufe ausgerüsteten Horizontal-verstärkers und auch des zweistufigen Vertikal-verstärkers ist 20 mV/cm. Der zweistufige Vertikalverstärker besitzt die gleiche Empfindlichkeit. Verschiedene Meßsender von 30 bis 150 MHz und von 100 bis 300 MHz, ein Quarzfrequenzmesser von 50 kHz bis 100 MHz und ein Resonanz-Frequenzmesser von 100 bis 300 MHz sind noch besonders erwähnenswert.

Die Federmann GmbH führte Meßplätze für die weitgespannten Wellenbereiche von 3 bis 4 cm, von 6 bis 60 cm und von 60 cm bis 4 m im Betrieb vor. Der Wellenwiderstand des 6- bis 60-cm-Meßplatzes ist 60 Ohm. Auch diese Meßplätze sind im Baukasten-Prinzip aufgebaut und erleichtern so die Anschaffung und auch die Herstellung. Alle auf diesem Gebiet vorkommenden Frequenzmessungen sind mit den Geräten einwandfrei auszuführen.


Dipl.-Ing. Günter Neuwirth, Hannover, setzt sich mehr für die praktischeren Meßgeräte ein, d. h. für Geräte, die für den Service-Mann notwendig sind. Der neue Meßsender für Fernsehen "MS 3/UF" mit einem Frequenzbereich von 5,3 ... 5,7, 18 ... 28, 42 ... 64 und 172 ... 223 MHz mit einer Genauigkeit von ± 0,2 bis 0,5% wird sich z. B. schnell einführen. Der handliche, verhältnismäßig kleine Aufbau ermöglicht das Aufstellen des Meßsenders auch in eng begrenzten Reparaturräumen. Die besonderen Merkmale sind hohe Strahlungsfreiheit, präziser Spannungsteiler, hohe Frequenzgenauigkeit, dreistufiger Aufbau des UKW-Senders, geringe schädliche FM sowie AM; der eingebaute Generator gibt 1000 Hz (± 5%) sowie

0,1 ... 10 MHz in drei Bereichen mit einer Genauigkeit von ± 1%. Der Empfängerprüfgenerator "EP 104" für den Werkstattbetrieb ist einstellbar Der Empfängerprüfgenerator für die Frequenzen 5...19 MHz, 5...1 MHz, 7 MHz, 4...0 MHz, 12...0 MHz. Der eingebaute kleine Schwebungssummer arbeitet bei 50 ... 12 000 Hz mit einer Genauigkeit von ± 5%. Der UKW-Meßsender "MS 3/U", der Meßsender "MS 103 C/F" und andere Geräte bleiben weiter im Bauprogramm. Außerordentlich umfangreich sind die von Philips vorgenommenen Ergänzungen in der Reihe der elektrischen Meßgeräte, die von der Elektro Spezial GmbH oder von der Deutschen Philips GmbH vertrieben werden. Neu herausgebracht wurden der Elektronenstrahl-Oszillograf "GM 5659" mit Projektionsvorsatz "FE 114" und der HF-Oszillograf "GM 5653/02" mit Voigtländer-Filmkamera zur Aufnahme von Oszillogrammen mit einer Voigtländer-Optik Lanthom 2,6, das Gleichspannungs-mV-Meter "GM 6010", das HF-mV-Meter "GM 6016" und der Hochspannungs-Meßkopf "GM 4579" sowie die elektronischen Schalter "GM 4580/01" und "GM 4581". Der neue Oszillograf ist ein universelles Meßgerät für Rundfunk- und Fernseh-Reparaturwerk-stätten, Laboratorien usw. Es ist außerordentlich sorgfältig konstruiert, so daß man nicht nur die täglich anfallenden Meßprobleme damit sondern auch schwierigere Versuche zur Dar-stellung bringen kann. Die beiden eingebauten Verstärker mit hoher Empfindlichkeit sowie die großen Frequenzbereiche des eingebauten Kipp-gerätes bis 250 kHz, die automatische Zeitablenkung für Impulsuntersuchungen und der direkte Plattenanschluß bis etwa 100 MHz kennzeichnen die vielseitigen Eigenschaften des Oszillografen.

Bisher konnte man Oszillogramme nur auf eine verhältnismäßig kleine Fläche projizieren. Man verwendete dafür das Objektiv vom Typ 8024, Offnungsverhältnis etwa 1:5. Mit dem Astro-Pantachar 1:1,8 der Berliner Firma ASTRO lassen sich jetzt Großprojektionen von Oszillogrammen bis zu einer Fläche von 2 m² durchführen. Der Vertrieb dieses Projektionsvorsatzes erfolgt unter der Bezeichnung FE 114. Das Objektiv besitzt eine Brennweite von 150 mm. Über den Aufbau, Fehlerkurven und vor allem über die Bedingungen, die bei Großprojektionen von Oszillogrammen auftreten, bringen wir veraussichtlich im Juni-Heft der Zeitschrift FUNK UND TON einen ausführlichen Aufsatz unter dem Titel "Großprojektionen von Oszillogrammen".

Links unten: Schwebungssummer HSS 10/20 mit Katodenstrahloszillograf Typ HQZ 16/1 von Dr.-Ing. Häberlein, München. Rechts unten: Philips-Meßgeräte; v.l.n.r.: Elektronischer Schalter GM 4581, Elektronenstrahloszillograf 5659, Elektronischer Schalter GM 4580

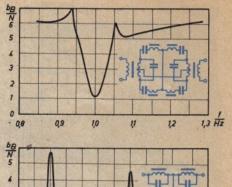
Das Gleichspannungs-mV-Meter und das HF-mV-Meter erlauben Messungen von Gleichspannungen bzw. Wechselspannungen in 12 Bereichen. Der Eingangswiderstand des Gleichspannungs-mV-Meters 0,67 bis 100 MOhm bei einer relativen Genauigkeit von 2 bzw. absoluten von 5%. Der Frequenzbereich des HF-mV-Meters reicht von 1000 Hz bis 30 MHz; 150 µV sind noch ablesbar. Die Eichung kann auch in db erfolgen. Der Hoch-spannungs-Meßkopf vergößert die Meßmöglich-keiten des Volt-Ohm-mA-Meters "GM 7635", er dient zur Erweiterung des Gleichspannungsmeß-bereiches bis 30 000 V und gestattet insbesondere die Messung der Hochspannung an Fernsehbildröhien: Eingangswiderstand 1000 MOhm, Meß-bereich 0...3 kV, 10...30 kV Gleichspannung. Der elektronische Schalter "GM 4580" ist ein Zu-satzgerät für Oszillografen, um mehrere elektrische oder physikalische Vorgänge gleichzeitig auf dem Leuchtschirm darzustellen. Das Gerät enthält zwei getrennte gleichartige Verstärker, eine Umschalteinrichtung und den Speiseteil. Man kann ihn da-her direkt an die Ablenkplatten beliebiger Elektronenstrahl-Röhren anschließen. Der Multivibrator läßt sich bei der Überprüfung von Verstärkern und Übertragungsanlagen auch getrennt verwenden. auch als Rechteckspannungsquelle für maximale Werte bis etwa 120 V zu benutzen. Die Ausführung "GM 4581", die neu hinzugekommen ist

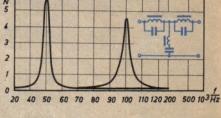
Blick in die Serienfabrikation von Meßinstrumenten bei der AEG

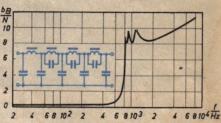
hat noch einige erweiterte Meßbereiche. Dieser Elektronenschalter ist so vollendet konstruiert, daß man damit praktisch alle Oszillografen-Aufgaben lösen kann.

Von der Elektro Spezial GmbH und der Deutschen Philips GmbH wird ferner noch eine Reihe von weiteren Meß- und Registriergeräten herausgebracht und vertrieben. Alle Messungen in der Praxis, im Labor oder in Instituten sind mit diesen vielseitigen Geräten durchzuführen.

Die Firma Dr.-Ing. KleIn in Stuttgart-Bad Cannstatt hat verschiedene Spezialgeräte für die Post konstruiert und vor allem das Ferroskop verbessert, in dem drei Breitbandverstärker eingebaut wurden.

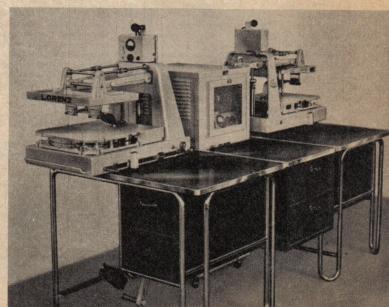

Vollkommen neu entwickelte Rohde & Schwarz, München, ein umfangreiches Programm, aus dem vorerst nur einmal die unsere Leser sicherlich am meisten interessierenden Fernsehmeßgeräte bespricchen werden sollen. Es sei zunächst das Röhrenvoltmeter mit fünf voneinander unabhängigen Meßkreisen erwähnt, mit denen es möglich ist, u. a. Spitzenwertmessungen bei Wechsel- und Gleichspannung bei extrem hohem Eingangswiderstand vorzunehmen. Verwendet wurde die Grei-


nacher Schaltung; das Röhrénvoltmeter mißt also die Wechselspannung von Spitze zu Spitze. Auch der Fernsehmeßsender, der nicht nur amplitudensondern auch frequenzmoddfierbar sein soll und ein sehr breites Frequenzband von 0... etwa 6.5 MHz umfassen muß, wurde neu aufgebaut. Die Arbeitsweise ist ähnlich wie die des alten AM/FM-Prüfsenders der Firma. Für Anschluß an den Modulationseingang des Meßsenders kann ein Rechteckwellengenerator benutzt werden. Dieser eignet sich besonders für Untersuchungen von Video-Verstärkern und von Fernsehempfängern einschließlich ihres HF-Teiles; er muß so konstruiert sein, daß eine plötzliche Amplitudenänderung innerhalb einer sehr kurzen Zeit (rund 0,1×10-6 s) eintreten kann. Ein Multivibrator erzeugt eine Rechteckspannung von etwa 20 V.


Ein sehr wichtiges Gerät für die Reparaturarbeit und für das Labor ist der Wobbelsender, mit dem Frequenzbereiche für HF- und ZF-Stufen einzustellen sind. Auch diesem Gerät wurde von den Konstrukteuren der Firma Rohde & Schwarz allergrößte Aufmerksamkeit zugewendet, und es ist ihnen ein wirklich ausgezeichnetes Er-gebnis beschieden gewesen. Der an den Wobbelsender angeschlossene Breitband-Oszillograf für Frequenzgebiete von 2,5 Hz bis 8 MHz hat maximal abweichende Amplituden von + 5% und - 30%. Beschränkt man den Frequenzbereich auf 10 Hz ... 1 MHz, so bleibt der Amplitudenweg auf weniger als 2% gerade. Diese Angaben beziehen sich auf den y-Verstärker. Der x-Verstärkerteil ist gleichstromgekoppelt, sein Frequenzbereich geht von 0 ... 500 kHz mit einem max. Fehler - 30%. Die Strahlgeschwindigkeit ist etwa 50 km/s, das ist ein Auflösungsvermögen von etwa 10-7 s. Die Anlage wird durch ein direktzeigendes Impedanzmeßgerät ergänzt, mit dem man den Verlauf der Impedanz z. B. von UKW- oder Fernsehantennen, Empfängereingängen, Filter usw. überprüfen oder ermitteln kann. Erwähnt seien noch Meßverstärker, wie man sie z. B. bei Modulationsmessungen an Fernsehgeräten gern verwendet. Sehr interessant ist auch der direkt-zeigende Leistungs- und Reflexionsmesser, dessen Meßprinzip dem der Richtkoppler der Dezi- und Zentimeter-Technik ähnelt.

Auf dem Gebiet der Elektronenstrahl-Oszillografen hat auch Siemens wieder einige Neuerungen vorzulegen, und zwar wurde vor allem der Zweistrahl-Oszillograf "Z 2101", mit dem man gleichzeitig zwei Vorgänge sichtbar machen kann, verbessert. In dem Gerät ist die Hochvakuum-Zweistrahlröhre HR 2/100/1,5 mit einem Schirmdurchmesser von 90 mm, der zu 70% aussteuerbar ist, eingebaut. Die Ablenkempfindlichkeit bei 1500 V Anodenspannung ist bei S = 0,26 mm/V, S = 0,24 mm/V. Der Frequenzbereich des x-Verstärkers umfaßt 10 Hz ... 100 kHz, der des y-Verstärkers umfaßt 10 Hz ... 4 bfall der Verstärkung an den Grenzen etwa — 3 db. Zur Aufnahme des Leuchtschirmbildes kann auch ein Fotovorsatz mit einer Leica-Kamera verwendet werden, der mit Hilfe eines einfachen Bajonettverschlusses an der Vorderwand des Oszillografen befestigt wird.

Wondel & Gollermann, Reutlingen, haben neu aufgelegt das Röhrenvoltmeter "TVM-23", ein Präzisionsmeßgerät zum Messen von kleinen Wechselspannungen. Es können Messungen von 30 Hz bis



Beispiele ausgeführter Filter von Wandel und Goltermann; von oben nach unten Bandpaß BP/F 5, Bandsperren BS/F 10 und BS/F 11, Tiefpaß TP/F 12

100 kHz, 1 mV... 150 V bei einer kleinsten ablesbaren Spannung von 0,1 mV gemessen werden, so daß man vor allem das Gerät auch zur Überprüfung kleiner Brummspannungen an Netzteilen sehr gut einsetzen kann. Neu ist auch das Röhrenvoltmeter "TVMQ-16", ein Voltmeter mit quadratischer Anzeige. Es eignet sich daher besonders zur Darstellung der Effektivwerte von Spannungsgemischen, z. B. von Rauschspannungen usw. Auch dieses Gerät hat einen Frequenzbereich von 30 Hz... 100 kHz und einen Meßbereich von 1 mV... 10 V. Die kleinste meßbare Spannung ist 0,3 mV. Die Hoch-, Tief- und Bandpässe Bandsperren und Weichenfilter werden für alle möglichen Besonderheiten hergestellt. Es können Weichenfilter aller Art für Tonfrequenzbereiche und für HF-Gebiete berechnet und geliefert werden. Die beigegebenen Kurven zeigen einen Bandpaß, eine Bandsperre und einen Tiefpaß.

Auf einer Sonderausstellung der französischen Industrie waren Meßgeräte der Firma Ribet-Desjardins, Montrouge (Seine), zu sehen, die im Aufbau und in dem Umfang der Frequenzbereiche etwa den deutschen Ausführungen entsprechen. Sehr leistungsfähige Meßgeräte, wie Röhrenvoltmeter, Impulsgeneratoren, HF- und NF-Genera-

Doppelarbeitsplatz für HF - Schweißung der C. Lorenz AG

HWG-Induktions "Maschine" der Firma Hochfrequenzwärme Schmidt & Co, Gesellschaft für Induktionsanlagen mbH, Reichenbach-Fils, mit HF-Teil der Elektro-Spezial GmbH. Die Aufnahmen zeigen die Härtung kleiner Stahlwellen

Elektro Spezial GmbH, Hamburg. Die außerordentlich kurzen Erhitzungszeiten gestatten sehr
rasche und wirtschaftliche Arbeit. Darüber hinaus
kann die HF-Erhitzung unmittelbar in der Werkstatt selbst erfolgen, da keine Ofenanlagen, Abschreckbäder usw. notwendig sind. Die Bedienung
ist außerordentlich einfach, so daß sie nicht durch
Spezialkräfte ausgeführt zu werden braucht, sondern durch angelernte Arbeiter erfolgen kann.
Die Teile werden ähnlich wie bei einer Drehbank in die entsprechend vorgesehenen Aufnahmeräume des Induktionsgerätes eingesetzt und durch
Zuführungseinrichtungen an die Arbeitsstelle
selbst herangebracht. Der Stromverbrauch ist sehr
gering. Die beiden Fotos zeigen außerordentlich
instruktiv den Härtevorgang von kleinen Wellen.

tionsteilen in Zusammenarbeit mit der Firma

toren, Frequenzmesser, Wellenmesser usw. zeigten die Ferisol-Geräte Dr.-Ing. Gettroy, Paris, über ihre Generalvertretung für die Schweiz, Deutschland und Österreich, der Firma Omni Ray AG,

Vorstehende Darstellungen geben nur einen ganz kleinen Ausschnitt aus dem umfangreichen meßtechnischen Programm der verschiedenen Aussteller. Wir behalten uns vor, auf das eine oder andere Gerät in der FUNK-TECHNIK oder in FUNK UND TON noch näher einzugehen.

Elektronik

Die FUNK-TECHNIK war eine der ersten deutschen Fachzeitschriften, die schon vor fast fünf Jahren auf die großen Vorteile der elektronischen Steuerungen bei der industriellen Fertigung hinwies Noch 1950 mußten wir in einem Leitaufsatz feststellen, daß die Industrie-Elektronik viel zuwenig von den deutschen Herstellern ausgenutzt wird. Wir fragten, warum wir auf dem Gebiet der Industrie-Elektronik kaum etwas anzubieten haben, obgleich es auch damals schon nicht schwierig gewäre, elektronische Regelgeräte Steuerungen zu bauen. Wir haben immer wieder darauf aufmerksam gemacht, daß die Elektronik wesentlich dazu beitragen kann, die industrielle Rationalisierung voranzutreiben, und zwar we-niger von der menschensparenden als von der gütesteigernden Seite her. Mit Freude konnten wir dann im Bericht von der Export-Messe Hannover 1950 berichten, daß sich allmählich der Gedanke Elektronik auch in Deutschland Bahn bricht und auf dieser Ausstellung zum ersten Male eine größere Anzahl von elektronischen Geräten angeboten wurde. Damals war man berechtigt, als Uberschrift für diesen Beitrag zu schreiben "Elektronik — das Wunder der Technik".

Nur zwei Jahre sind seitdem vergangen, und unsere schon 1948 aufgestellte Behauptung, daß die Industrie-Elektronik einmal ein Hauptzweig det HF-Technik werden wird, ging in Erfüllung. Diesmal wurde von der Elektronik nicht mehr als von dem "Wunder der Technik" gesprochen: wenn man durch die Hallen in Hannover wanderte — die noch größer und übersichtlicher geworden sind — sah man elektronische Steuergeräte, Regelgeräte, Zählgeräte usw. an den Maschinen nicht mehr besonders angekündigt, sondern sie sind jetzt vielfach eine Selbstverständlichkeit. Ein Erfolg, der um so beachtlicher ist, als er tatsächlich — man ist versucht zu sagen — über Nacht gekommen ist. So sehr sich auch vielleicht heute noch mancher Konstrukteur von Maschinen gegen die elektronische Steuerung — weil mit "zerbrechlichen Glasröhren" ausgerüstet — innerlich wehren mag, so sehr muß er sich doch darüber im klaren sein, daß er gezwungen ist, wenn er ins Ausland exportieren will, sich der elektronischen Einrichtungen zu bedienen.

Konnte man noch 1950 und auch 1951 einigermaßen übersichtlich über die Neuerungen berichten, so ist dies bei dem Rundgang 1952 — bei der Fülle der ausgestellten Geräte — nicht mehr möglich. Wir können uns nur auf einige wenige Beispiele beschränken.

Mehr als 30 Firmen boten in diesem Jahr elektronische Schutz-, Regel- und Steuerungseinrichtungen an, darunter alle bekannten großen Werke der Elektroindustrie, erfreulicherweise aber auch eine Reihe von Firmen, die sich bisher weniger mit diesem Zweig der Elektrotechnik beschäftigt hetten; sie werden durch ihre Beweglichkeit sicherlich mit dazu beitragen, daß die Elektronik immer mehr in die verschiedenen Industriezweige eindringt. Eine Beschreibung der einzelnen Steuerund Regelanlagen zu geben, erübrigt sich um so mehr, als wir gerade in der FUNK-TECHNIK darüber bereits ausführlich berichteten und auch weiterhin berichten werden. Es sei aber in diesem Zusammenhang noch auf die Neuerscheinung des in unserem Verlag herausgekommenen Werkes von Dr. R. Kretzmann "Industrielle Elektronik" hingewiesen, in dem besonders im zweiten Teil die einzelnen Schalt- und Steuerungsmöglichkeiten mit vielen Schaltbeispielen besprochen sind.

Die Gruppen Hochfrequenz-Schweißgeräte und Hochfrequenz-Industriegeneratoren waren ebenfalls in Hannover stark vertreten. So stellten sieben Firmen Hochfrequenz-Schweißgeräte aus und zehn Firmen Hochfrequenz-Industriegeneratoren; auch da wieder altbekannte Vertreter und neu hinzu-gekommene Firmen. Zwei Beispiele zeigen, wie sehr sich auch das Gebiet der Hochfrequenz-Schweißung und -Härtung neue Verwendungsmöglichkeiten eroberte. Die Lorenz-Großschweiß-Presse "SP 150 e" stellt eine interessante Neuentwicklung dar, bei der alle Erfahrungen, die man bisher beim Hochfrequenzschweißen gemacht hat, ausgewertet wur-den. Die präzise Doppelsäulen-Geradführung des Oberwerkzeuges sowie die vollautomatische Be-tätigung mittels der zum Patent angemeldeten Zweistufenschaltung kennzeichnen die Konstruk-tion. Bei dem Gerät konnte auf zusätzliche hydraulische oder Preßlufteinrichtungen verzichtet werden; trotzdem erzielt man aber außerordent-lich kurze Arbeitstakte. Der Hub beträgt konstant 25 mm. Das Oberwerkzeug ist in zwei Richtungen neigbar.

Die Firma HWG Hochirequenzwärme Schmidt & Co., Reichenbach/Fils, baut HWG-HF-Induktions-"Maschinen" zur Wärmebehandlung von Konstruk-

KURZNACHRICHTEN

Feierstunde in den GRUNDIG Radio-Werken GmbH, Fürth (Bay.)

Der 12. Mai 1952 wird als Markstein in die junge aber um so bedeutendere Geschichte der Grundig Radio-Werke eingehen. An diesem Tag verließ der millionste Empfänger das Fließband, und wenn man sich überlegt, daß die Grundig Radio-Werke so recht erst 1947 aufgebaut worden sind, so ist dies wohl auch in der schnellebigen Radiobranche ein Novum. Zieht man weiterhin in Betracht, daß das junge deutsche Radiowerk die größte Empfängerfabrik Europas ist, so kann man verstehen, daß alle prominenten Redner, die die Glück-wünsche des bayerischen Staates, der Bundesregierung, des Regierungsbezirks und der Stadt Fürth selbst überbrachten, dem Schöpfer und Initiator der Werke, Herrn Max Grundig, diese einmalige Leistung bestätigten. Die Feier selbst fand in einer neuerbauten riesigen Montagehalle statt, in der in Zukunft die Grundig-Fernsehempfänger in Bandfabrikation entstehen werden. Wenn auch bereits in den Jahren 1945 und 1946 in beengten Räumen Einzelteile, wie Spulen und Trafos, gebaut wurden und auch Röhren-Prüf- und Meßgeräte entstanden, so beginnt die Geschichte des Werkes eigentlich erst mit der Grundsteinlegung 1947 an der Stelle, an der heute die öde

Max Grundig, der Schöpfer und Inhaber der größten europäischen Radio-Apparate-Fabrik Wah-Foto

Wiesenfläche von ehedem von großzügig angelegten Werkhallen und Labors bedeckt ist. "Heinzelhießen zunächst die Geräte, die hier gebaut wurden. Ihm folgte der "Weltklang", nomen est omen, denn sehr bald hatte der Name "Weltklang" beim Radiohandel und bei der Kundschaft einen sehr guten Klang. Die 1947 erbauten Werkhallen waren bald zu klein, und das Jahr 1948 stand im Zeichen des Ausbaues. Bedenkt man, daß am Jahresende nach der Währungsreform bereits 650 Arbeitnehmer in den Grundig Radio-Werken beschäftigt waren, so kann man die un-erhörte Leistung der Geschäftsführung so recht ermessen. 1949 bis 1951 wurden immer mehr Hallen errichtet, Arbeiter und Angestellte eingestellt; der Umsatz, sei es im Inland, sei es im Ausland, stieg von Monat zu Monat. 1952 verlassen rund 2500 Geräte je Tag die Fließbänder und rund 5000

Angestellte und Arbeiter sind in den Grundig-Werken beschäftigt. Jeder dritte Radioapparat, der irgendwo in Deutschland gekauft wird, ist ein Grundig-Gerät. Wahrlich eine Erfolgsbilanz für ein so junges Unternehmen! Mit Stolz können Max Grundig und seine engsten Mitarbeiter auf das zurückblicken, was sie aus eigenen Kräften, ohne irgendwelche besonderen Unterstützungen, in einer so kurzen Zeit geschaffen haben.

Werk I der Firma Graetz KG durch Feuer vernichtet

In den Morgenstunden des 9. Mai brach im Stammwerk (Werk I) der Firma Graetz KG, Altena i. W., ein Großfeuer aus und vernichtete gesamte Obergeschoß mit der Montage der Rundfunkgeräte und Petromax-Lampen. Die Grundfertigungswerkstätten (Stanzerei, Werkzeugbau, Galvanik usw.) erlitten nur Wasserschäden. Be-sonders schmerzlich ist die völlige Zerstörung der Fernseh- und Rundfunklaboratorien mit allen Unterlagen.

Das Feuer entstand aus bisher unbekannten Gründen mutmaßlich in einem Papierlager und konnte erst nach dem Anrücken von 12 Löschzügen aus Altena und der weiteren Umgebung unter Kontrolle gebracht werden.

Der Wiederaufbau lief sofort nach Beendigung der Aufräumungsarbeiten unter der Leitung von Fritz Graetz an (Erich Graetz befand sich am Tage des Unglücks auf einer Geschäftsreise in Spanien). Die Fertigung von Rundfunkempfängern und Lampen läuft bereits in Ausweichwerkstätten und in den bisherigen Werken II und III. Hier findet ein Teil der im vernichteten Werk I be-schäftigten 1200 Arbeiter Verwendung, während die übrigen für den Wiederaufbau eingesetzt sind. Noch am Tage des Unglücks wurden die Be-stellungen auf Meß- und Prüfgeräte bei den Spezialfabriken erteilt, und am 10. Mai trafen die ersten Sendungen ein!

Der Schaden wurde anfangs mit 1 Million DM angegeben. Wir wir von unterrichteter Seite er-fahren, ist er weit höher, jedoch in voller Höhe gedeckt; auch für die Verluste aus der Betriebsunterbrechung kommen die Versicherungen auf.

Noraphon 53

Im wesentlichen unterscheidet sich der neue Koffer der Nora-Werke durch eine Reihe von Verbesserungen im technischen Aufbau. Die Abstimmkreise wurden von fünf auf sechs erhöht, wodurch die Empfangsemptindlichkeit wesentlich verbessert ist. Der neue Oval-Lautsprecher sorgt dafür, daß die Klangqualität den heutigen Erwartungen angepaßt wird. Die Stahlröhrenwartungen angepaßt wird bestückung ist beibehalten.

Schaub Supracord-Koffer

Das in der FUNK-TECHNIK, Bd. 7 [1952], H. 7, S. 172/173, beschriebene Schaub Supracord-Chassis wird nunmehr auch in einem Koffer eingebaut auf den Markt gebracht. Die Ausstattung ist ähnlich der "Konsolette". Im Koffer jedoch ist noch eine kleine Endstufe mit Lautsprecher vorgesehen, so daß man den Supracord-Koffer auch als selbständiges Reise- und Diktiergerät verwenden kann. Von Schaub kommt auch ein Kleinst-Reise-Super Kolibri – für den Mittelwellenbereich in den Handel. Das kleine 20 cm breite, 14,6 cm hohe und 5,8 cm tiefe Gehäuse läßt sich leicht trans-Erstaunlich ist die große Leistung des Empfängers, der mit seinen sechs Kreisen und einer zweistufigen Schwundregelung den meisten Emplangsschwierigkeiten gewachsen ist.

Fernsehsender in Europa

Stand: Mai 1952

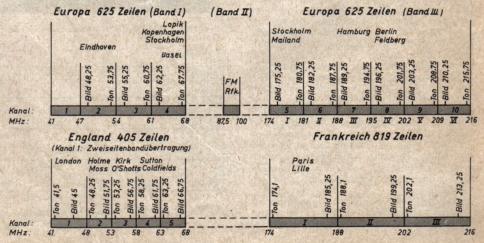
四十一百 在 5 至 2 2 3	Zeilen- Trägerfrequenz			Leistung	Sendezeiten		
	zahl	Bild MHz	Ton MHz	d. Bildsend.	(Ortszeit)		
England O London O Holme Moss O Kirk O'Shotts O Sutton Coldfields	405	45 51,75 56,75 61,75	41,5 48,25 53,25 58,25	17 50 vorl. 5 40	tägl. 15—18 19.30—22.15		
Frankreich O Paris/Eiffelturm O Paris/Eiffelturm O Lille	441 819 819	46 185,25 185,26	42 174,1 174,112	30 0,5 0,5	tägl. 3½ Std.		
Deutschland × Berlin-Funkturm × Hamburg-Hochbunker	625	196,25	201,75	1	tägl. 20—22; für die Industrie 15.30—17.30 Mo., Mi., Fr. 20—22;		
~ Feldberg-Ts		196,25	201,75	1	Di., Do. 16—17 Versuche der Bundespos		
Holland × Lopik ~ Eindhoven	625	62,25 48,25	67,75 53,75	5 2,5	Di., Fr. 20.15—21.45 Versuche und Progr. au Lopik		
Dänemark × Kopenhagen (Funkhaus)	625	62,25	67,75	0,5	Di., Do., Sbd. 20—21, tagsüber Testbilder		
Schweden ~ Stockholm ~ Stockholm	625	62,25 175,25	67,75 180,75	0,5	Mi. 14—16 u. Versuche		
Italien ~ Turin	625	82,25 175,25	87,75 180,75	5 5	nur Versuchssendungen		
Schweiz ~ Basel	625	62,25	67,75	0,5	Di., Do., Sbd. 20.15-21.4		
UdSSR O Moskau × Leningrad × Kiew	625	49,75 59,25 77,25	56,25 65,75 83,75		6× wöchentl. 20—23 regelm. Versuche 2× wöchentl. Versuche		

o regelmäßiger Programmbetrieb, × regelmäßiger Versuchsbetrieb, ~ technische Versuche.

Italien: Nach einer uns zugegangenen Mitteilung der Radio Italiana liegen die Trägerfrequenzen beider Sender nicht fest.

Vatikan: Während des Heiligen Jahres (1951) arbeitete im Vatikanstaat ein Fernsehsender mit 819 Zeilen, ein Geschenk der französischen Katholiken. Er wurde im März 1952 nach Frankreich zurückgeschickt und befindet sich zur Zeit im Umbau auf 625 Zeilen, so daß er künftig Anschluß an das italienische Fernsehen haben wird.

Spanien: Entgegen anderslautenden Meldungen hat die Einrichtung eines Fernsehdienstes in Barcelona und Madrid keine Fortschritte gemacht. Die in England bestellten Studio- und Senderanlagen wurden bisher nicht ausgeliefert; wahrscheinlich eine Folge der schlechten Devisenlage des Landes.


Dänemark: Die Generaldirektion des staatlichen Rundfunks als Träger der Fernsehversuche in Kopenhagen erwägt die Einstellung des Fernsehbetriebs. Bisher sind weniger als 200 Fernsehteilnehmer registriert worden; die tatsächliche Zahl (gemessen an der Anzahl der verkauften Geräte) dürfte bei 400 lieren. bei 400 liegen.

Schweiz: Nach Bewilligung der Kredite wird das Fernsehen definitiv im Frühjahr 1953 über einen 5-kW-Sender auf dem Uetliberg bei Zürich beginnen. Die Studioanlage ist inzwischen in England bestellt worden.

Norwegen: Man rechnet mit der Aufnahme des Versuchsbetriebes in Oslo über einen Philips-Sender etwa im Juli d. J.

Frankreich: Beide 819-Zeilen-Sender Paris und Lille arbeiten im gleichen Kanal. Zur Vermeidung gegenseitiger Störungen sind die Träger um 10 bzw. 12 kHz gegeneinander verschoben (Offset-Verfahren). Paris und Lille sind seit einigen Monaten über eine Richtfunkstrecke verbunden.

Aufteilung der Fernsehkanäle

Die meteorologischen Einflüsse auf die Ausbreitung

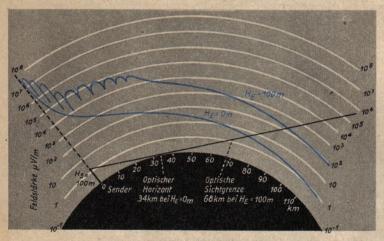


Abb. 1. Verteilung der Feldstärke in Abhängigkeit von der Entfernung. Sendeleist. 10 kw, Wellenlänge 3 m

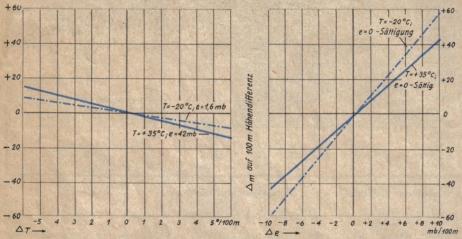


Abb. 2. Änderung des Brechungsmoduls M bei Temperaturänderung

Abb. 3. Änderung des Brechungsmoduls M bei Dampfdruckänderung

Die Einführung der Ultrakurzwellentechnik in der ganzen Welt ist in den letzten zehn Jahren in einem derartigen Tempo vor sich gegangen, daß sie der wissenschaftlichen Untersuchung schon in mancher Hinsicht vorausgeeilt ist. Dies gilt insbesondere auch für die Frage, in welchem Umfange und in welcher Weise die Ausbreitung ultrakurzer Wellen durch meteorologische Faktoren beeinflußt wird. Die großen Vorteile, die sich sowohl in technischer Hinsicht wie in Hinblick auf die Programmgestaltung durch den Aufbau eines UKW-Sendernetzes ergeben würden, waren bald erkannt und wurden durch die Theorie bestätigt. Grob gesagt, würden sich die UK-Wellen unter normalen Bedingungen ganz ähnlich wie das Licht verhalten, d. h., ihre Ausbreitung würde im wesentlichen durch den Horizont begrenzt sein. Ausschlaggebend für die Reichweite würden also Sender- und Empfangsantennenhöhe sein. Die Abb. 1 zeigt die errechnete Verteilung der Feldstärke in Abhängigkeit von der Empfangsantennenhöhe. Wir sehen, daß jenseits des optischen Horizontes die Feldstärke sehr schnell absinkt und Werte annimmt, die einen normalen Empfang nicht mehr ge-

Schon sehr bald nach Inbetriebnahme der ersten UKW-Sender wurden aber auch jenseits des Horizontes, ja sogar der doppelten Horizontweite, zeitweilig erheblich größere Feldstärken gemessen, als dies unter normalen Bedingungen möglich wäre. Es sind Fälle bekanntgeworden, wo kurzzeitig sogar auf Entfernungen von mehreren 1000 km noch einwandfreier UKW-Empfang festgestellt wurde. Die Vermutung, daß es sich hierbei um atmosphärische Brechung oder Reflexion ähnlich wie bei der Fata Morgana des Lichts handelt, liegt nahe und wird durch die Theorie bestätigt.

Wir wissen, daß die Ausbreitungsgeschwindigkeit elektromagnetischer Wellen abhängig ist vom Brechungsindex der Luft n, der von 1 nur sehr wenig verschieden ist, d. h., die Strahlen breiten sich nahezu geradlinig aus. Für 0°C und einen Luftdruck von 1 Atm ist

$$(n-1) \cdot 10^6 \approx 300.$$

Zur Vereinfachung der Rechnungen und Zeichnungen ist man in der Literatur allgemein dazu übergegangen, nicht mit dem Brechungsindex n, sondern mit dem sogenannten modifizierten Brechungsmodul M zu arbeiten. Hierbei wird die Erdoberfläche als eben angesehen:

$$M \approx \frac{79}{T} \left(p + 4800 \frac{e}{T} \right) + 11.4 z$$

Hierbei sind T = Temperatur der Luft in $^{\circ}$ K, p = Luftdruck in mb, e = Dampfdruck in mb, z = Höhe in 100 m.

Da sich z und p mit der Höhe gesetzmäßig und kontinuierlich ändern, ist M und damit die Krümmung der Funkstrahlen vom Dampfdruck und von der Temperatur der Luft abhängig.

Wie die Steigung der Geraden in Abb. 2 und 3 zeigt, wird M in weitaus stärkerem Maße vom Dampfdruck als von der Temperatur beeinflußt.

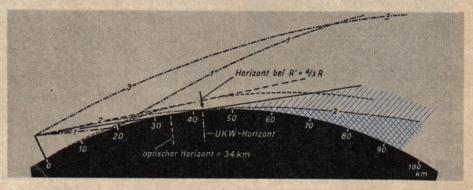


Abb. 4. Funkstrahlen in der Normalatmosphäre. Sendeantennenhöhe 100 m, Empfangsantennenhöhe 0 n

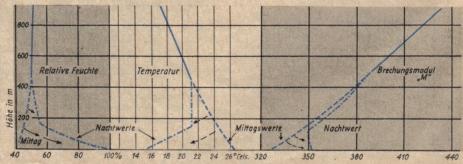


Abb. 5. Änderung von relativer Feuchte, Temperatur und Brechungsmodul bei einer Ausstrahlungsinversion am Boden in klaren Nächten

ultrakurzer Wellen

In der sogenannten "Normalatmosphäre" nehmen, wie die langjährigen Messungen zeigen, Temperatur und Dampfdruck mit der Höhe ab. Ein vom Sender abgehender Funkstrahl wird daher zwar ein wenig zur Erde gekrümmt, aber jenseits des Horizontes nicht mehr wieder zur Erde zurückkehren (Abb. 4).

Die Krümmung der Funkstrahlen ist im Mittel so, daß man, wenn man den Funkstrahl gerade läßt, den Erdradius (R) auf 4/3 · R vergrößern müßte, d. h. also, der UKW-Horizont liegt um etwa 15 % jenseits des Lichthorizontes.

Überreichweiten bei UKW-Sendern können also nur dann auftreten, wenn in die Atmosphäre Schichten mit starker Abnahme des Dampfdruckes und Zunahme der Temperatur eingelagert sind. Der-artige Schichten, Inversionen genannt, sind nun gar nicht selten. Ja, man ist geneigt zu sagen, daß die "Normalatmo-sphäre" etwas Außergewöhnliches ist. Die Atmosphäre ist, wie wir wissen, in dauernder Bewegung und Absink-Hebungsprozessen unterworfen. Außerdem wird sie durch die tägliche Sonneneinstrahlung und nächtliche Ausstrahlung vom Erdboden her erwärmt oder abgekühlt. Den Gang der Temperatur und Luftfeuchtigkeit und damit des Brechungsmoduls in den bodennahen Schichten an klaren Tagen gibt die Abb. 5 wieder.

Die Absink- und Hebungsprozesse der Atmosphäre sind an die "Luftdruckberge und täler" — Hoch- und Tiefdruckgebiete — gebunden: Luft, die unter relativ hohem Druck steht, beginnt abzusinken. Sie sinkt nun nicht in ihrer Gesamtheit gleichmäßig ab, sondern bildet Schichten aus, die mehr oder weniger stark absinken, an deren Grenzen die Temperatur sprunghaft zunimmt und die Feuchte mit der Höhe abnimmt (Abb. 6). Bei Hebung der Troposphäre gleichen sich diese Sprünge wieder aus.

In welcher Form können nun derartige Inversionen eine Vergrößerung der Reichweite herbeiführen? Wir kennen hierfür zwei Möglichkeiten: 1. die Brechung und 2. die Reflexion.

Brechung. Die bereits weiter oben erwähnte normale Krümmung der Funkstrahlen, die zu einem effektiven Erdradius von etwa 4/3 · R führt, wird

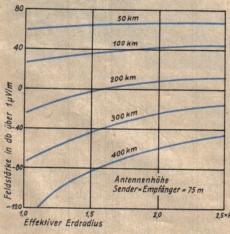


Abb. 8.
Feldstärke bei verschiedenem effektiven Erdradius

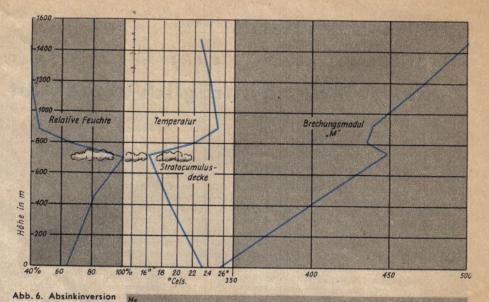


Abb. 7. Verschiebung des Horizontes durch Brechung (Änderung des effektiven Erdradius)

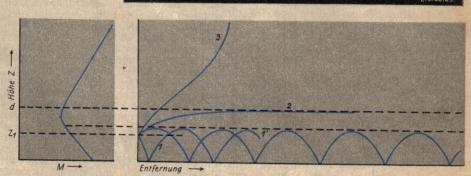


Abb. 9. Funkstrahlen bei Superrefraktion in einer Bodeninversion

häufig — insbesondere bei Inversionen — überschritten. Diese stärkere Brechung wirkt sich dann so aus, als ob der Erdradius noch weiter vergrößert würde, so daß dann der UKW-Horizont weiter hinausgeschoben wird (s. Abb. 7).

Einer englischen Arbeit (1) entnehmen wir eine Darstellung über die Änderung der Feldstärke bei Entfernungen von 50 bis 400 km vom Sender (Abb. 8); sie gilt bei einer Sendeleistung von 1 kW, 90 MHz und Antennenhöhe von Sender und Empfänger = 75 m und λ /2-Dipol-Antennen. Dabei ist db = 20 log E [μ V/m). Ein Sonderfall der Brechung ist die sogenannte Superrefraktion.

Superrefraktion bedeutet, daß ein Funkstrahl, der parallel zur Erdoberfläche vom Sender abgeht, so stark gekrümmt wird, daß er zur Erdoberfläche zurückkehrt. Sein Krümmungsradius darf also nicht größer sein als der Erdradius. Das setzt aber voraus, daß der Brechungsmodul M mit der Höhe nicht zunimmt, sondern möglichst sogar abnimmt. Ein derartiger Verlauf des Brechungsmoduls mit der Höhe ist aber in unseren Breiten nur bei sehr kräftigen Bodeninversionen möglich und daher verhältnismäßig selten. Er setzt z. B. voraus, daß die relative Luftfeuchtigkeit vom Boden bis 300 m Höhe bei einer Temperatur von 20 ° C um 30 %, 10°C um 50% und bei 0°C um 90 % abnimmt. Im Sommer oder in südlichen Breiten ist also die Wahrscheinlichkeit, daß Superrefraktion auftritt, größer als im Winter. Die Abb.9 zeigt den Verlauf der Funkstrahlen bei einer derartig kräftigen Bodeninversion.

Solange sich der Funkstrahl innerhalb der Bodeninversion bewegt, kann er die Erde nicht verlassen, sondern wird von der Erdoberfläche reflektiert und wieder dorthin zurückgebrochen. Es gibt dann auch jenseits des Horizontes kein Schattengebiet, sondern im Gegenteil eine Konzentration der Feldstärke innerhalb der Inversion. Nun, derartige "ducts", wie sie die angelsächsische Literatur nennt, werden bei uns nur selten zu Überreichweiten führen, zumal nur in ganz ebenem Gelände Boden-Inversions-schichten bei Nacht als "Teppich ohne Löcher" über dem Erdboden ausgebreitet sind. Schon im Mittelgebirge wird das nicht vorkommen können. Hinzu kommt, daß "ducts", wenn sie auftreten, selten dicker als 50 m sind und daher ihr Wirkungsgrad nur gering ist. Dort, wo sie aber auftreten, führen sie zu außergewöhnlich starken Feldstärken jenseits des normalen Horizontes. Nun kommen aber auch bei uns Überreichweiten vor, die sogar noch jenseits der doppelten Horizontweite Feldstärken hervorrufen, die sich kaum von solchen in der Nähe des Horizontes unterscheiden. Sie sind auf Reflexion an höher gelegenen Inversionsschichten zurückzuführen.

(Wird fortgesetzt)

Klangregler – nachträglich eingebaut

Klangregelstufen sind in der letzten Zeit recht beliebt geworden. Es sei hier des-halb eine Anordnung vorgeschlagen, die sich sicher bei vielen Geräten nachträg-lich anbringen läßt, wenn diese über eine hinreichende Verstärkungsreserve ver-fügen. Aus mehrfach gegebenem Anlaß scheint es allerdings zunächst notwendig zu sein, einmal darauf hinzuweisen, daß jede echte Klangregelung nur durch eine frequenzabhängige Verstärkungsregelung erfolgen kann. Eine Klangbeeinflussung ohne Spannungs- bzw. Leistungsverlust ist nicht denkbar, da ja zunächst durch irgendeine Vorrichtung ein Bezugspegel geschaffen werden muß, von dem aus die hohen oder tiefen Frequenzen angehoben bzw. abgesenkt werden können. Ob dies durch Dämpfungsglieder oder durch zusätzliche Verstärkerstufen erfolgt, ist dabei gleichgültig. Bisher wurden vorzugsweise Anordnungen beschrieben, die entweder eine Frequenztrennung nach dem Mehrkanalprinzip darstellten oder aber zusätzliche Verstärkerstufen im direkten Ubertragungsweg enthielten, mit denen der Verstärkungsverlust durch die Regelglieder ausgeglichen oder die notwendige Anhebung bewirkt wurde.

Im folgenden soll nun auf die Dimensionierung eines Klangregelnetzwerkes eingegangen werden¹), das nicht nur von-

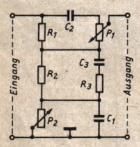


Abb. 1. Schaltbild des Klangregelnetzwerkes. An P_1 wird die Höhenanhebung eingestellt, während P_2 die Baßbetonung reguliert

einander unabhängig stufenlos einstellbare Höhen- und Tiefenregler besitzt, sondern das als zusätzliches Bauelement auch nachträglich noch in einem bestehenden Verstärker eingebaut werden kann. Die Wirkungsweise dieser Anordnung ist grundsätzlich anders als bei einer gewöhnlichen Tonblende oder einem sonstigen Geräuschfilter. Diese beschneiden bekanntlich den Frequenzverlauf meistens von "oben", so daß beispielsweise höhere Frequenzen im Verstärker weniger gut übertragen werden und so eine Baßbetonung bzw. eine Höhendämpfung erzielt wird. Im Gegensatz dazu liefert der hier beschriebene Klangregler eine echte Höhen- bzw. Tiefenanhebung. Diese ist dadurch erzielbar, daß mit zwei Reglern eine Grunddämpfung, die sich bei der Einschaltung des Filters ergibt, jeweils frequenzabhängig beseitigt wird. Die drei Glieder R₂, C₃, R₃ des Netzwerkes bestimmen im wesentlichen den Verstärkungsverlust bzw. die Grunddämpfung, die durch Einschaltung dieses Klangreglers

1) J. A. Szabo, "An Improved Tone Control Circuit", Radio + Television News, Sept. 1951, S. 86. eintritt. Der Verlust wird zweckmäßig in db eingesetzt, und er ist natürlich nur so groß zu wählen, wie es die Verstärkungsreserve des gegebenen Gerätes zuläßt. Im Gegensatz zu zahlreichen anderen Regelschaltungen bestehen bei dem in Abb. 1 skizzierten Netzwerk mehrere durchaus definierte Einstellungen. Beide Regler können so angeschlossen werden, daß die Höhen- bzw. Tiefenanhebungen um den obenerwähnten db-Wert nur bei voller Rechtsdrehung auftreten, während die Regler am linken Anschlag keine Klangbeeinflussung bewirken. Auch bei Verwendung eines Doppelknopfes ist es also sogar dem Laien möglich, die gewünschte Klangeinstellung reproduzierbar vorzunehmen.

Soll das Netzwerk einem bestehenden Verstärker einverleibt werden, so wird man unter Beachtung der Verstärkungsreserven eine Anhebung von etwa 15 db (rund sechsfache Überhöhung) kaum über-schreiten dürfen. Bei der Einschaltung ist zu berücksichtigen, daß die Eingangsimpedanz etwa in der Größenordnung von R_1 liegt. Wie aus den weiter unten gegebenen Formeln hervorgeht, soll P mindestens zehnmål so groß sein, so daß eine höhere Eingangsimpedanz nur bedingt zu erzielen ist, wenn man für P1 nicht zu unnötig brummempfindlichen Potentiometerwerten kommen will. Das Netzwerk soll also möglichst nach einer Triode eingebaut werden, wobei sich dann mit der notwendigen gleichstrommäßigen Abtrennung Arbeitswiderstände um 50 kOhm ergeben, mit denen Dreipolröhren noch gut arbeiten. Soll ein solches Netzwerk dagegen in einem neu zu bauenden Verstärker untergebracht werden, so kann man die gewünschte Überhöhung ohne weiteres noch größer ein-Hierbei ist natürlich darauf zu achten, daß der Verstärker auch in Extremstellungen noch unverzerrt arbeitet. Diesen Klangregler ordnet man am besten an einer Stelle im Gerät an, an der bereits einige Volt Niederfrequenz auftreten, so daß die Brummaufnahme weniger gefährlich ist. Mit den folgenden Formeln dürfte es leicht sein, die entsprechenden Größen für abweichende Arbeitsbedingungen auszurechnen.

Es sei zunächst daran erinnert, daß der Verstärkungsgrad in db aus der Eingangs- $(U_{\rm E})$ und Ausgangsspannung $(U_{\rm A})$ wie folgt erhalten wird:

db = 20 log
$$\frac{U_{\rm A}}{U_{\rm E}}$$
 = 20 log $\frac{6}{1}$ = 15,6

Hierauf sind die entsprechenden Anhebefrequenzen festzulegen, die bei dem gewählten Beispiel 200 Hz bzw. 2 kHz betragen. Mit einem hinreichend hoch zu wählenden Widerstand R_1 (beispielsweise 100 k Ω) und der geforderten Überhöhung ergibt sich:

$$R \ 2 = \frac{R_1}{\left(\text{num lg } \frac{\text{db}}{20}\right) - 1} = \frac{10^5}{\left(\text{num lg } \frac{15,6}{20}\right) - 1} \approx 20 \text{ k}\Omega$$

Sind $F_{\rm U}$ und $F_{\rm H}$ die tiefe bzw. hohe Frequenz, bei der die Anhebung 3 db $(0.7 {\rm facher}$ Wert) unter dem Maximum liegt, so wird:

$$P_{2} = \frac{1}{2\pi \cdot R_{1} \cdot F_{U}} \approx 8 \text{ nF}$$

$$P_{2} = \frac{10}{2\pi \cdot C_{1} \cdot F_{U}} = \frac{10}{6,28 \cdot 8 \cdot 10^{-9} \cdot 200} \approx 1 \text{ M}\Omega$$

Es empfiehlt sich, für die beiden Potentiometer solche mit linearer Regelkurve zu verwenden. Grundsätzlich sind natürlich auch logarithmische Regler verwendbar, wenngleich bei diesen die Einstellung in gewissen Drehbereichen zusammengedrängt erscheint.

$$P_1 = 10 \cdot R_1 = 10 \cdot 10^5 = 1 \text{ M}\Omega$$

$$R_3 = \frac{R_2 \cdot P_1}{R_1} = \frac{20 \cdot 10^3 \cdot 10^6}{10^5} = 200 \text{ k}\Omega$$

Auch der Kondensator C_2 zur Höhenübertragung ist selbstverständlich von der Impedanz des Netzwerkes abhängig. Mit größeren Werten wird C_2 immer kleiner, und um auch diesen Kondensator einigermaßen groß gegen die Verdrahtungskapazität zu halten, wählt man R_1 tunlichst nicht zu hoch.

$$C_{2} = \frac{1}{2\pi \cdot P_{1} \cdot F_{H}}$$

$$= \frac{1}{6,28 \cdot 10^{6} \cdot 2000} \approx 80 \text{ pF}$$

$$C_{3} = \frac{C_{2} \cdot P_{1}}{R_{3}}$$

$$= \frac{80 \cdot 10^{-12} \cdot 10^{6}}{2 \cdot 10^{5}} \approx 400 \text{ pF}$$

Für die Erzielung einer größeren Anhebung brauchen nur die drei mittleren Glieder verändert zu werden. Für die

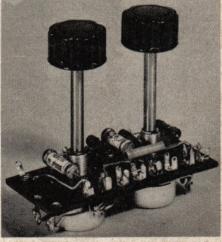


Abb. 2. Ansicht eines praktisch auf einer Lötösenplatte ausgeführten Klangregelnetzwerkes

gleichen Grenzfrequenzen $F_{\rm U}$ und $F_{\rm H}$ werden beispielsweise bei einer zehnfachen Anhebung (20 db): $R_2=10~{\rm k}\Omega$, $R_3=100~{\rm k}\Omega$, $C_3=700~{\rm pF}$.

Abb. 2 zeigt abschließend noch eine praktische Ausführungsform dieses Klangregelnetzwerkes. Beide Potentiometer sind an einer Lötösenplatte angebracht, so daß sich recht kurze Leitungen zu den übrigen Schaltgliedern ergeben. Außerdem ist die ganze Einrichtung auf diese Weise als kompletter Bauteil montierbar.

Klangregler – nachträglich eingebaut

Klangregelstufen sind in der letzten Zeit recht beliebt geworden. Es sei hier deshalb eine Anordnung vorgeschlagen, die sich sicher bei vielen Geräten nachträg-lich anbringen läßt, wenn diese über eine hinreichende Verstärkungsreserve verfügen. Aus mehrfach gegebenem Anlaß scheint es allerdings zunächst notwendig zu sein, einmal darauf hinzuweisen, daß jede echte Klangregelung nur durch eine frequenzabhängige Verstärkungsregelung erfolgen kann. Eine Klangbeeinflussung ohne Spannungs- bzw. Leistungsverlust ist nicht denkbar, da ja zunächst durch irgendeine Vorrichtung ein Bezugspegel geschaffen werden muß, von dem aus die hohen oder tiefen Frequenzen angehoben bzw. abgesenkt werden können. Ob dies durch Dämpfungsglieder oder durch zusätzliche Verstärkerstufen erfolgt, ist dabei gleichgültig. Bisher wurden vorzugsweise Anordnungen beschrieben, die entweder eine Frequenztrennung nach dem Mehrkanalprinzip darstellten oder aber zusätzliche Verstärkerstufen im direkten Ubertragungsweg enthielten, mit denen der Verstärkungsverlust durch die Regelglieder ausgeglichen oder die notwendige Anhebung bewirkt wurde.

Im folgenden soll nun auf die Dimensionierung eines Klangregelnetzwerkes eingegangen werden¹), das nicht nur von-

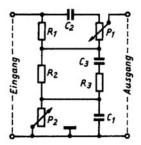


Abb. 1. Schaltbild des Klangregelnetzwerkes. An P₁ wird die Höhenanhebung eingestellt, während P₂ die Baßbetonung reguliert

einander unabhängig stufenlos einstell-bare Höhen- und Tiefenregler besitzt, sondern das als zusätzliches Bauelement auch nachträglich noch in einem bestehenden Verstärker eingebaut werden kann. Die Wirkungsweise dieser Anordnung ist grundsätzlich anders als bei einer gewöhnlichen Tonblende oder einem son-stigen Geräuschfilter. Diese beschneiden bekanntlich den Frequenzverlauf meistens von "oben", so daß beispielsweise höhere Frequenzen im Verstärker weniger gut übertragen werden und so eine Baßbetonung bzw. eine Höhendämpfung erzielt wird. Im Gegensatz dazu liefert der hier beschriebene Klangregler eine echte Höhen- bzw. Tiefenanhebung. Diese ist dadurch erzielbar, daß mit zwei Reglern eine Grunddämpfung, die sich bei der Einschaltung des Filters ergibt, jeweils frequenzabhängig beseitigt wird. Die drei Glieder R_2 , C_3 , R_3 des Netzwerkes bestimmen im wesentlichen den Verstärkungsverlust bzw. die Grunddämpfung, die durch Einschaltung dieses Klangreglers

1) J. A. Szabo, "An Improved Tone Control Circuit", Radio + Television News, Sept. 1951, S. 86. eintritt. Der Verlust wird zweckmäßig in db eingesetzt, und er ist natürlich nur so groß zu wählen, wie es die Verstärkungsreserve des gegebenen Gerätes zuläßt. Im Gegensatz zu zahlreichen anderen Regelschaltungen bestehen bei dem in Abb. 1 skizzierten Netzwerk mehrere durchaus definierte Einstellungen. Beide Regler können so angeschlossen werden, daß die Höhen- bzw. Tiefenanhebungen um den obenerwähnten db-Wert nur bei voller Rechtsdrehung auftreten, während die Regler am linken Anschlag keine Klangbeeinflussung bewirken. Auch bei Verwendung eines Doppelknopfes ist es also sogar dem Laien möglich, die gewünschte Klangeinstellung reproduzierbar vorzunehmen.

Soll das Netzwerk einem bestehenden Verstärker einverleibt werden, so wird man unter Beachtung der Verstärkungsreserven eine Anhebung von etwa 15 db (rund sechsfache Überhöhung) kaum überschreiten dürfen. Bei der Einschaltung ist zu berücksichtigen, daß die Eingangsimpedanz etwa in der Größenordnung von R_1 liegt. Wie aus den weiter unten gegebenen Formeln hervorgeht, soll P1 mindestens zehnmål so groß sein, so daß eine höhere Eingangsimpedanz nur bedingt zu erzielen ist, wenn man für Pi nicht zu unnötig brummempfindlichen Potentiometerwerten kommen will. Das Netzwerk soll also möglichst nach einer Triode eingebaut werden, wobei sich dann mit der notwendigen gleichstrommäßigen Abtrennung Arbeitswiderstände 50 kOhm ergeben, mit denen Dreipolröhren noch gut arbeiten. Soll ein solches Netzwerk dagegen in einem neu zu bauenden Verstärker untergebracht werden, so kann man die gewünschte Überhöhung ohne weiteres noch größer ein-Hierbei ist natürlich darauf zu achten, daß der Verstärker auch in Extremstellungen noch unverzerrt arbeitet. Diesen Klangregler ordnet man am besten an einer Stelle im Gerät an, an der bereits einige Volt Niederfrequenz auftreten, so daß die Brummaufnahme weniger gefährlich ist. Mit den folgenden Formeln dürfte es leicht sein, die entsprechenden Größen für abweichende Arbeitsbedingungen auszurechnen.

Es sei zunächst daran erinnert, daß der Verstärkungsgrad in db aus der Eingangs- $(U_{\rm E})$ und Ausgangsspannung $(U_{\rm A})$ wie folgt erhalten wird:

db = 20 log
$$\frac{U_{\rm A}}{U_{\rm E}}$$
 = 20 log $\frac{6}{1}$ = 15,6

Hierauf sind die entsprechenden Anhebefrequenzen festzulegen, die bei dem gewählten Beispiel 200 Hz bzw. 2 kHz betragen. Mit einem hinreichend hoch zu wählenden Widerstand R_1 (beispielsweise 100 k Ω) und der geforderten Überhöhung ergibt sich:

R 2 =
$$\frac{R_1}{\left(\text{num lg } \frac{\text{db}}{20}\right) - 1}$$

= $\frac{10^5}{\left(\text{num lg } \frac{15.6}{20}\right) - 1} \approx 20 \text{ k}\Omega$

Sind $F_{\rm U}$ und $F_{\rm H}$ die tiefe bzw. hohe Frequenz, bei der die Anhebung 3 db (0,7facher Wert) unter dem Maximum liegt, so wird:

$$P_{2} = \frac{1}{2\pi \cdot R_{1} \cdot F_{U}} = \frac{1}{6,28 \cdot 10^{5} \cdot 200} \approx 8 \text{ nM}$$

$$P_{2} = \frac{10}{2\pi \cdot C_{1} \cdot F_{U}}$$

Es empfiehlt sich, für die beiden Potentiometer solche mit linearer Regelkurve zu verwenden. Grundsätzlich sind natürlich auch logarithmische Regler verwendbar, wenngleich bei diesen die Einstellung in gewissen Drehbereichen zusammengedrängt erscheint.

 $6,28 \cdot 8 \cdot 10^{-9} \cdot 200$

$$P_1 = 10 \cdot R_1 = 10 \cdot 10^5 = 1 \text{ M}\Omega$$

 $R_3 = \frac{R_2 \cdot P_1}{R_1} = \frac{20 \cdot 10^3 \cdot 10^6}{10^5} = 200 \text{ k}\Omega$

Auch der Kondensator C_2 zur Höhenübertragung ist selbstverständlich von der Impedanz des Netzwerkes abhängig. Mit größeren Werten wird C_2 immer kleiner, und um auch diesen Kondensator einigermaßen groß gegen die Verdrahtungskapazität zu halten, wählt man R_1 tunlichst nicht zu hoch.

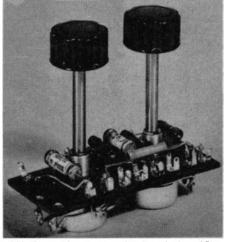
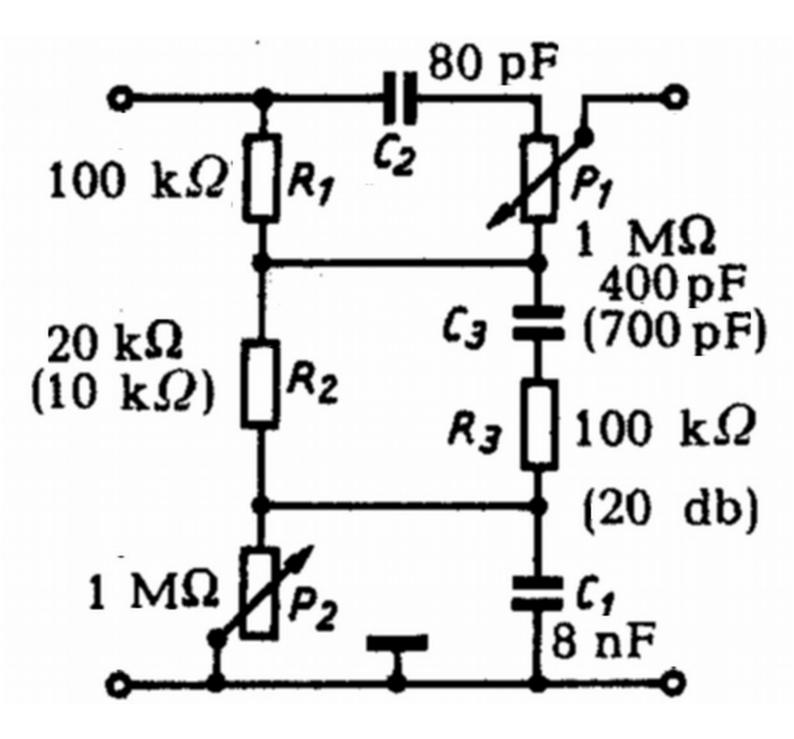
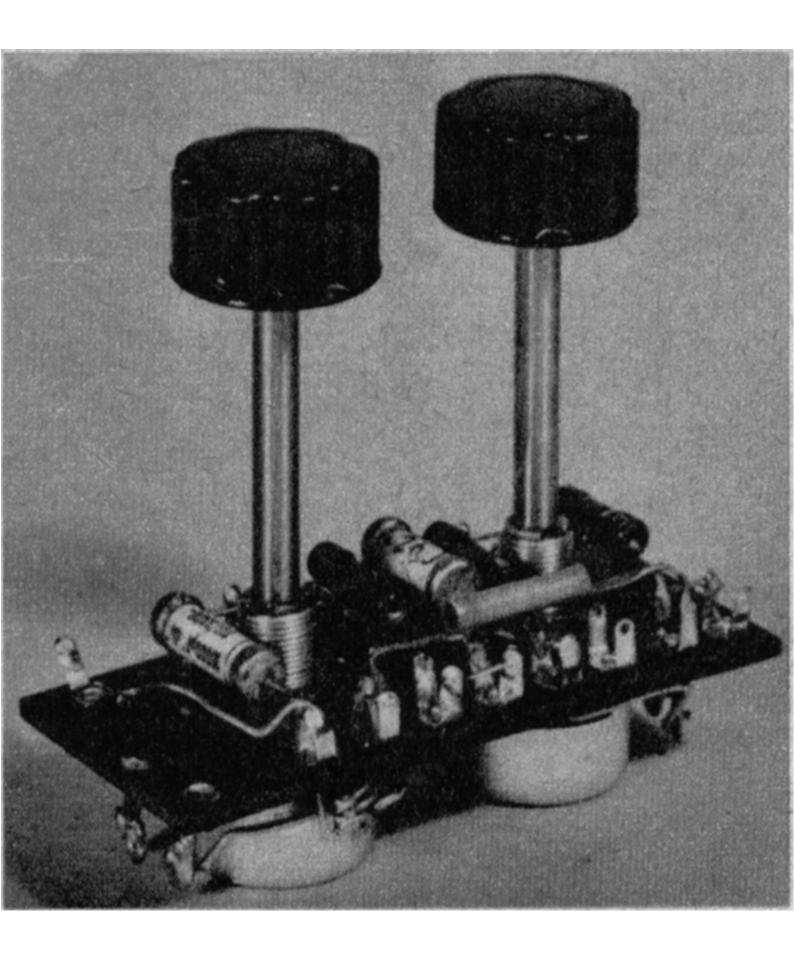
$$C_2 = \frac{1}{2\pi \cdot P_1 \cdot F_H}$$

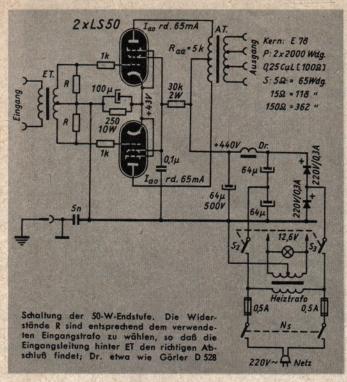
$$= \frac{1}{6,28 \cdot 10^6 \cdot 2000} \approx 80 \text{ pF}$$

$$C_3 = \frac{C_2 \cdot P_1}{R_3}$$

$$= \frac{80 \cdot 10^{-12} \cdot 10^6}{2 \cdot 10^5} \approx 400 \text{ pF}$$

Für die Erzielung einer größeren Anhebung brauchen nur die drei mittleren Glieder verändert zu werden. Für die


Abb. 2. Ansicht eines praktisch auf einer Lötösenplatte ausgeführten Klangregelnetzwerkes

gleichen Grenzfrequenzen F_U und F_H werden beispielsweise bei einer zehnfachen Anhebung (20 db): $R_2 = 10 \text{ k}\Omega$, $R_3 = 100 \text{ k}\Omega$, $C_3 = 700 \text{ pF}$.

Abb. 2 zeigt abschließend noch eine praktische Ausführungsform dieses Klangregelnetzwerkes. Beide Potentiometer sind an einer Lötösenplatte angebracht, so daß sich recht kurze Leitungen zu den übrigen Schaltgliedern ergeben. Außerdem ist die ganze Einrichtung auf diese Weise als kompletter Bauteil montierbat. C. M.

Improvisierte 50-W-Endstufe

Bei der Lösung zahlreicher Übertragungsaufgaben, wie sie z.B. während irgendwelcher Veranstaltungen vorkommen, ist es manchmal wünschenswert, eine zusätzliche Leistungsendstufe greifbar zu haben, mit der für die Beschallung weiterer oder Räume - ohne große Umstände weitere Sprechleistung bereitgestellt werden kann. Es handelt sich also im wesentlichen um eine möglichst billige Erweiterung einer vielleicht schon bestehenden Anlage, um zusätzlichen Aufgaben gerecht zu werden. Schwierigkeiten bei der Erstellung einer solchen zusätzlichen Endstufe werden in vielen Fällen durch die teilweise recht umfangreiche Stromversorgung hervorgerufen. Sind doch beispielsweise für zwei LS 50 etwa 400 V Anodenspannung und rd. 200 mA erforderlich. Meist lohnt bei dem geschilderten Verwendungszweck die zusätzliche Beschaffung eines entsprechend leistungsfähigen und deshalb teueren Netztransformators nicht, so daß der Aufbau eines derartigen Gerätes oft unter-

Wie sich bei einigen Versuchen ergab, ist es jedoch nicht unbedingt erforderlich, für eine Endstufe mit der genannten Bestückung einen kompletten Wechselstrom-Netzteil, wie er normalerweise verwendet wird, aufzubauen. Wie das Schaltbild zeigt, kann man sehr wohl einem Delon-Spannungsverdoppler auskommen. Dieser Gleichrichter gibt im Leerlauf maximal $2\sqrt{2}$ der zugeführten Wechselspannung als Gleichspannung ab. wobei Doppelweggleichrichtung stattfindet. Allerdings ist bisher recht wenig über die Belastungsabhängigkeit der Verdopplung in den Spannungsvervielfachern veröffentlicht worden. Diese hängt bekanntlich von der Größe der Ladungs-

kondensatoren ab. Bei einigen Untersuchungen ergab sich, daß mit zwei Doppelelkos von je 2×32 µF — insge-samt also zwei Elektrolytblocks von je 64 µF — eine tat-sächliche Verdopplung der 220 V Netzspannung auf 440 V Gleichspannung bei einer Stromentnahme von über 200 mA möglich war. Zur Gleichrichtung wurden zwei Selenstan-gen (AEG 1/4 392/0,3 Bl) zu je 28 Platten benutzt. Die Brummspannung UB in Volt aus der Delon-Schaltung kann nach folgender Beziehung abgeschätzt werden:

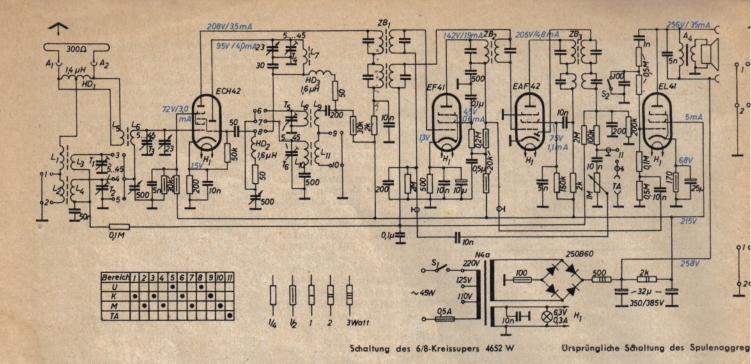
$$U_{\rm B} \approx \frac{I \cdot 10^6}{5.5 \cdot f \cdot C/2} \quad [V]$$

Hierin bedeuten I = entnommener Gleichstrom in A; i = doppelte Frequenz der

zugeführten Wechselspannung in Hz; C = Kapazität eines Ladekondensators in uF. Um die Brummspannung gering zu halten, kann man gegebenenfalls vor der Siebkette noch einen weiteren Ladekonden-sator anordnen. Dessen Kapazität ist dann zu C/2 hinzuzählen. Wie aus den Messungen hervorging, stimmen die Erfahrungswerte recht gut, nach denen bei diesem Verdoppler rd. 4 mA je uF eingesetzter Ladekapazität entnehmbar sind. Benutzt man diesen Gleichrichter ohne Transformator zur Stromversorgung eines Gerätes, so dürfte es in den meisten Fällen nicht mehr möglich sein, eine direkte Erdung vorzunehmen. Häufig treten dann Brummstörungen auf, die nur umständlich zu beseitigen sind. Bei der hier skizzierten Endstufe sind diese Nachteile jedoch bedeutungslos, da ja bereits NF-Spannungen von einigen Volt verarbeitet werden. Man kann dementsprechend den Null-Leiter der Gegentaktstufe isoliert im Gestell verlegen und die tatsächliche Erdverbindung auch mit dem Gehäuse über einen kleinen hinreichend spannungsfesten Kondensator von rd. 5 nF vornehmen. Die Zuführung Steuerspannung für die Gegentaktröhren erfolgt zweckmäßig durch einen kleinen Eingangsübertrager ET, und auch der im Anodenkreis liegende Ausgangsübertrager braucht sekundärseitig nicht mit dem Minusleiter dieses Zusatzverstärkers verbunden zu sein. Um diese Leistungsendstufe möglichst vielseitig verwenden zu können, ist es praktisch, auch für ET einen kleinen Ausgangstransformator zu benutzen, wie er beispielsweise in Kofferoder Autoempfängern verwendet wird. Gegentakt-Batterie-Endstufen liegt Raa meist etwa bei 20 kOhm, so daß man eine hinreichende Übersetzung bekommt. Die hier primärseitig benutzte nieder-ohmige Wicklung von ET dürfte mit ihrer Impedanz von etwa 5 Ohm überall noch anschließbar sein. Auf der Gitterseite von ET sind im Schaltbild noch zwei Widerstände R eingezeichnet, die zur Erzielung definierter Impedanzwerte zweckmäßig sind. Ihre Größe ist entsprechend der hochohmigen Wicklung des Eingangstransformators einzusetzen. Notfalls können für ET auch zwei einzelne kleine Ausgangstrafos verwendet werden, deren Wicklungen dann jeweils hinereinanderzuschalten sind.

Der Katodenwiderstand der beiden LS 50 wurde in diesem Aufbau etwas höher gewählt, als er normalerweise in den Datenblättern angegeben ist. Der Anodenruhestrom ist hier je etwa 65 mA und steigt bei voller Aussteuerung, für die steigt bei voller Aussteuerung, für die rd. 30 V_{eff} an den Steuergittern notwendig sind, auf je etwa 85 mA. Bei richtiger Anpassung kann in diesem Betriebszustand eine Nutzleistung von 45 W erreicht werden, wobei ein Klirrfaktor von rd. 2 % nicht überschritten wird. Rein betriebsmäßig eind bei dieser Endstufe betriebsmäßig sind bei dieser Endstufe noch einige Vorkehrungen zu treffen, damit ein zuverlässiges Arbeiten möglich wird. Es empfiehlt sich z.B., zwei dop-pelpolige Netzschalter vorzusehen. Mit kann zunächst die Heizung der beiden LS 50 eingeschaltet werden, und erst wenn die Röhren aufgeheizt sind, ist mit Se und S_3 die Anodenspannung einzuschalten. Wird der zweite Schalter nicht vorgesehen, so baut sich bei kalten Röhren zunächst die Leerlaufspannung des Verdopplers mit etwa 600 V auf, die zwar als Kaltspannung von den Schirmgittern vertragen wird, andererseits aber zur Zerstörung des Siebelkos führt. Die Heizung der Röhren erfolgt aus einem kleinen Heiztrafo, dessen sekundärseitige Mittelanzapfung gegebenenfalls mit dem elektrischen Minusleiter verbunden wird. Eine Signallampe im Heizkreis und evtl. eine Glimmlampe nach dem Spannungsverdoppler können zur Anzeige des Betriebszustandes eingebaut werden.

Müssen wir logarithmieren?


Die Dämpfungseinheiten Neper und Dezibel bringen mancherlei Rechenvorteile. Wem aber die Ubung fehlt, dem sagen diese logarithmischen Maße wenig, sondern nehmen ihm (wir wollen es ruhig aussprechen) vielleicht sogar die Lust zum Weiterrechnen...

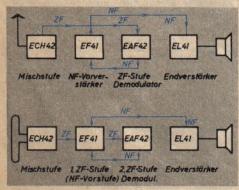
db gibt das Verhältnis von zwei Werten zueinander zu erkennen. Solch ein Wertverhältnis wird durch db nicht im natürlichen Zahlensystem wiedergegeben, sondern logarithmisch.

Gewiß ist es auch für den Praktiker besser und eigentlich notwendig, sich mit den Grundregeln des logarithmischen Rechnens zu befreunden. Schlagen wir S. 70 des Handbuches für Hochfrequenzund Elektrotechniker auf, so ist zu erkennen, daß es sich wirklich nur um eine Übungssache handelt.

Im Beitrag der Nebenseite steht nun im Nenner der dritten Formel die Aufforderung, das Spannungsverhältnis auszurechnen, das 15,6 db entspricht. Der dekadische Logarithmus dieses Spannungsverhältnisses ergibt sich durch Teilung des Dezibel-Wertes durch 20, also: 0,78. Nach der Logarithmentabelle auf S. 5 des Handbuches gehört zur Zahl hinter dem Komma, der Mantisse, ein Numerus von etwa 6026; die Kennziffer vor dem Komma sagt uns, daß im gefundenen Numerus ein Komma nach der n+1ten Stelle hingehört, d. h. nach der 0+1=1ten Stelle, also: 6,026.

Wenn wir aber unser Handwerkzeug kennen, hätten wir diese Rechnung gar nicht notwendig gehabt; Spezialtabellen machen dies für uns einfacher. So ist z. B. auf Seite 24 des Handbuches bei 16 db, auf die wir unsere 15,6 db ruhig abrunden können, schon der Wert des Spannungsverhältnisses $U_1:U_2$ mit 6,31 ausgerechnet.

Eine Bauanleitung

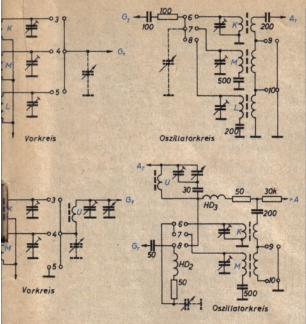

Der preiswerte Mittelsuper mit UKW: 6/8-Kreis-A

Während noch vor Jahresfrist die UKW-Rundfunkversorgung auf der Senderseite zu wünschen übrigließ und der Eindruck entstand, als ob der Rundfunkhörer zu einem großen Prozentsatz Empfänger mit UKW-Teil besitzt, ist jetzt — vor Abschluß des UKW-Senderbauprogramms — festzustellen, daß noch viel zuwenig Hörer am UKW-Empfang teilnehmen können. Diese Tatsache dürfte z.T. auf die immer noch verhältnismäßig hohen Anschaffungs-

kosten eines neuen AM-FM-Superhets bau kombinierter Empfänger auf gewi teile nicht in der gewünschten ho stehen. Es ist daher ein AM-FM-Sup bleibt, der aber trotzdem ausreichend

Vorderansicht mit Skalenantrieb

Blockschema des 6/8-Kreissupers (AM-Empfang oben, FM-Empfang unten)


Im 6/8-Kreis-AM-FM-Super 4652 W sind die geforderten Bedingungen durch eine Reflexschaltung erfüllt worden, die den NF-Vorverstärker gleichzeitig als ersten UKW-ZF-Verstärker ausnutzt. Die sich ergebende Gesamtverstärkung ist so groß, daß in der EL 41-Endstufe eine mit Klangfarbenschalter kombinierte Spannungsgegenkopplung angeordnet werden konnte. Der Empfänger begnügt sich mit drei Wellenbereichen (UKW, KW, MW). Das Wellenschalterproblem ist unter Verwendung eines handelsüblichen Dreibereich-Spulenaggregats so gelöst worden, daß die LW-Spulen durch die UKW-Induktivitäten ersetzt werden. Man kann daher auf den Anbau zusätzlicher Schaltsegmente verzichten. Ferner wurde als Demodulationsart Flankendemodulation gewählt. Bei dieser Schaltung kommt der Empfänger mit insgesamt 4 Röhren (+ Trockengleichrichter) aus.

In der Mischstufe ergibt sich ein einfacher Schaltungsaufbau, wenn man auf eine getrennte additive UKW-Mischröhre verzichtet und für AM/FM eine gemeinsame Triode-Hexode mit multiplikativer Mischung bevorzugt. Die verwendete ECH 42 schwingt auch im 3-m-Bereich noch einwandfrei. Zum Anschluß einer Dipolantenne oder einer normalen MW-Antenne sind die Buchsen A_1 und A_2 vorgesehen. Die Antennenspannung für den AM-Kanal wird über die Mittelanzapfung der UKW-HF-Drossel HD_1 der Antennenspulug erfolgt auf sämtlichen Bereichen induktiv. Die Induktivität der UKW-Vor-

kreisspule L_6 geht bei MW und KW in die Gesamtinduktivität des Vorkreises ein. Da der Induktivitätswert gering ist, konnte auf eine Umschaltung oder auf den Kurzschluß von L_6 verzichtet werden. Der UKW-Drehkondensatorteil liegt auch bei MW und KW am Steuergitter der Mischröhre. Die Vorkreisspulen L_3 , L_4 für den KW- und MW-Bereich werden jeweils getrennt angeschaltet.

Auch im Oszillatorteil genügen für die Umschaltung der einzelnen Bereiche insgesamt drei Schaltkontakte (6, 7, 8). Bei KW und MW sind die Kontakte 7 und 8 geschlossen. In der Gitterleitung befinden sich der $50\text{-}\Omega$ -Widerstand und die HF-Drossel HD_2 . Die Schwingkreisspulen werden mit zugehörigen Trimmern getrennt angeschaltet, während die Rückkopplungsspulen in Serie liegen und bei KW-Empfang die MW-Rückkopplungsspule kurzgeschlossen wird. Der UKW-Schwingkreis benutzt die bekannte Colpitts-Oszillatorschaltung, bei der die Rückkopplung durch den 30-pF-Kondensator erfolgt. Die Anschaltung an den Gitterkreis geschieht über Schaltkontakt 8. Die Anodenspannung wird der ECH 42-Triode über die HF-Drossel HD_3 und den $50\text{-}\Omega$ -Widerstand zugeführt. Um einen Schaltkontakt einzusparen, liegt der AM-Drehkondensator (500 pF) im Gitterkreis, ist jedoch für UKW ohne Wirkung, da er hochfrequenzmäßig durch die HF-Drossel HD_2 abgetrennt ist.

Die Anodenspannung gelangt zum Oszillator über einen $30\text{-k}\,\Omega\text{-Widerstand}$, während die Schirmgitterspannung der aus

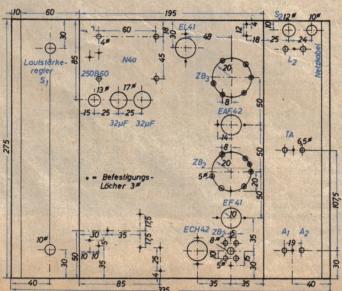
BV 814 (oben) und abgeänderte Schaltung mit UKW-Bereich (unten)

WERNER W. DIEFENBACH

1-FM-Super 4652 W

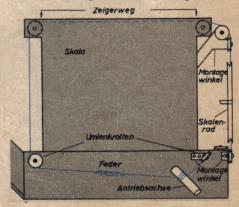
kzuführen sein. Hinzukommt, daß der Selbsthwierigkeiten stößt, da verschiedene Spezialalitativen Ausführungsform zur Verfügung In Interesse, dessen Aufwand relativ niedrig ofindlichkeit und gute Klangqualität aufweist.

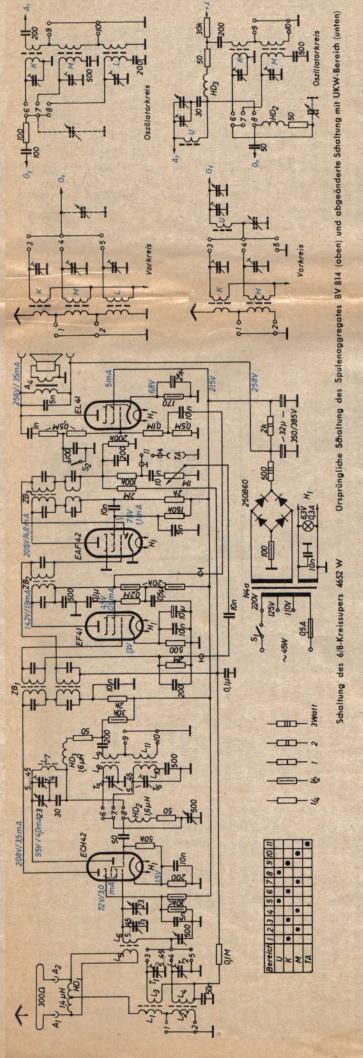
Verdrahtungsskizze


zwei $30\text{-k}\Omega\text{-Widerständen}$ bestehende Spannungsteiler erzeugt. Der Schirmgitterkondensator ist nur 5 nF groß, um die für den UKW-Bereich kritische Induktivität klein zu halten.

Im Anodenkreis der Mischröhre liegt das erste ZF-Kombinationsfilter ZB_1 . Die Primärkreise der 468-kHz- und 10,7-MHz-Bandfilter sind in Serie geschaltet. Der Sekundärkreis des 10,7-MHz-Bandfilters gibt seine Spannung an das Steuergitter der EF 41 ab, die bei FM-Empfang als erster ZF-Verstärker arbeitet. Im Anodenkreis dieser Röhre befindet sich der Primärkreis des zweiten 10,7-MHz-Filters, dessen Sekundärseite mit dem Gitter der

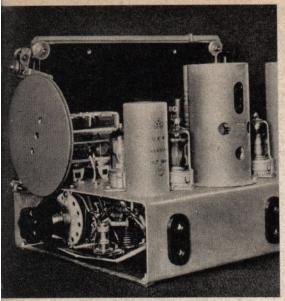
zweiten ZF-Röhre EAF 42 Verbindung hat. Ein drittes 10,7-MHz-ZF-Bandfilter ist im Anodenkreis der EAF 42 angeordnet. Da für AM-Empfang einstufige ZF-Verstärkung ausreicht, wird die 468-kHz-Zwischenfrequenz unter Umgehung der Reflexstufe EF 41 direkt der ZF-Röhre EAF 42 zugeleitet. Im Anodenkreis der EAF 42 liegt das zweite 468-kHz-ZF-Bandfilter in Serie mit den 10,7-MHz-Kreisen. Die Diode der EAF 42 erzeugt die Signalspannung für AM- und FM-Betrieb sowie die Regelspannung. Bei AM-Empfang werden die Mischröhre ECH 42 und die ZF-Röhre EAF 42 geregelt, während die Regelspannung bei FM-Wiedergabe ledig-


lich die zweite ZF-Röhre EAF 42 beeinflußt.

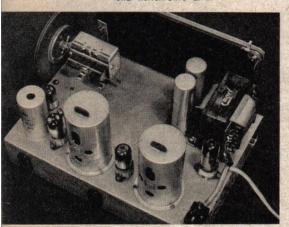

Die erzeugte Signalspannung gelangt über den $100\text{-k}\Omega\text{-Widerstand}$ und den 10-nF-Kondensator zum Lautstärkeregler ($1\text{ M}\Omega$), Die Tonabnehmerspannung wird über Schaltkontakt 11 zum oberen Ende des 10-nF-Kondensators geführt. Da die EF 41 in Reflexschaltung als NF-Vorverstärker arbeitet, kommt die Tonfrequenzspannung nunmehr über den Sekundärkreis des ersten 10,7-MHz-Bandfilters zum Steuergitter der EF 41. Im Anodenkreis der EF 41 wird die verstärkte Niederfrequenz direkt hinter dem Primärkreis des zweiten 10,7-MHz-Bandfilters abgegriffen und dem Gitterkreis der Endstufe verwendet eine Spannungsgegenkopplung mit Baß- und Höhenanhebung. Mit Hilfe des Klangfarbenschalters S_2 können

Maßskizze und Einzelteileanordnung auf dem
Chassis

Skalenseilführung, Zeigerweg, Skalenrad und
Anordnung der notwendigen Einzelteile
zur Abstimmanzeige
des Empfängers


Eine Bauanleitung

WERNER W. DIEFENBACH


Der preiswerte Mittelsuper mit UKW: 6/8-Kreis-AM-FM-Super 4652 W

Während noch vor Jahresfrist die UKW-Rundfunkversorgung auf der Senderseite zu wünschen übrigließ und der Eindruck entstand, als ob der Rundfunkhörer zu einem großen Prozentsatz Empfänger mit UKW-Teil besitzt, ist jetzt—vor Abschluß des UKW-Senderbauprogramms — festzustellen, daß noch viel zuwenig Hörer am UKW-Empfang teilnehmen können. Diese Tatsache dürfte z.T. auf die immer noch verhältnismäßig hohen Anschaffungs-

kosten eines neuen AM-FM-Superhels zurückzuführen sein. Hinzukommt, daß der Selbstbau kombinierter Empfänger auf gewisse Schwierigkeiten stößt, da verschiedene Spezialteile nicht in der gewünschlen hochqualitativen Ausführungsform zur Verfügung stehen. Es ist daher ein AM-FM-Super von Interesse, dessen Aufwand relativ niedrig bleibt, der aber trotzdem ausreichende Empfindlichkeit und gute Klangqualität aufweist.

Rückansicht mit Mischröhre ECH 42 und Reflexröhre EF 41

Gesamtansicht von oben. Ganz rechts ist der Klangfarbenschalter sichtbar

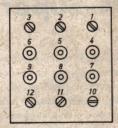
die Höhen beschnitten werden. In diesem Fall ist S_2 geschlossen.

Durch Anwendung der Selengleichrichtertechnik ist die Schaltung des Netzteils vereinfacht worden. Zur Gleichrichtung dient der Selengleichrichter 250 B 60. Der 100- Ω -Widerstand schützt die Sekundärwicklung bei etwaigen Kurzschlüssen. Die Anodenstromsiebkette besteht aus zwei Elektrolytkondensatoren (je 32 μ F) und einem 2-k Ω -Siebwiderstand. Der 500- Ω -Widerstand begrenzt die Anodengleichspannung auf den Anschlußwert. Die Heizwicklung ist durch einen 10-nF-Kondensator abgeblockt.

Trotz des verhältnismäßig einfachen schaltungstechnischen und konstruktiven Aufbaus erreicht der AM/FM-Super hohe Empfangsleistungen. Allerdings müssen im HF- und ZF-Teil erstklassige Einzelteile benutzt werden. Wie schon erwähnt, dient als Vorkreis-Oszillator-Aggregat eine handelsübliche Dreibereich-Ausführung (Straßer BV 814), die unter Verzicht auf den LW-Bereich für UKW abgeändert worden ist.

Der Umbau des Spulenaggregates geht folgendermaßen vor sich. Man wickelt zunächst die Vorkreis- und Oszillatorspulen samt Ankopplungswicklungen des LW-Bereiches ab und bewickelt die frei gewordenen Spulenkörper mit den UKW-Windungen. Die Antennenspule L_5 befindet sich direkt auf der Wicklung L_6 . Dann werden die Spulenanschlüsse in die frei gewordenen Kontakte eingelötet. Neue Kontakte sind nicht erforderlich. Ferner können die Paralleltrimmer des

LW-Bereichs (5...45 pF) weiterverwendet werden. In das Spulenaggregat werden ferner die HF-Drosseln HD_2 und HD_3 eingelötet sowie die beiden 50- Ω -Widerstände und der 200-pF-Kondensator, damit sich kurze Verbindungen ergeben. Eine Teilansicht des umgebauten Spulensatzes geht aus den Fotos hervor. Ferner läßt eine Skizze die notwendigen Anderungen erkennen. Die Spulenwickeldaten für den UKW-Bereich sind in der Tabelle zusammengestellt. Es empfiehlt sich, die UKW-Spulen mit Kitt festzulegen, da der Abgleich mit Hilfe der Paralleltrimmer erfolgen kann.


Als Zweifach-Kondensator wurde der neue Philips-Kleinbautyp AC 1000 verwendet, der über nichtisolierte Rotorplattenpakete verfügt. Die vier Kondensatorpakete sind symmetrisch zur Trennwand in der Kondensatorwanne angeordnet. Die AM-Kapazitätskurve ist dem gegenwärtigen Wellenplan angepaßt. Es ergibt sich eine gleichmäßigere Verteilung der Sender am kurzwelligen Ende des MW-Bereichs. Die Endkapazität des AM-Teils ist jeweils 500 pF, die des FM-Teils 23 pF. Bei der im Mustergerät verwendeten Skala und der seitlichen Montage des Drehkondensators hat es sich aus Stabilitätsgründen zweckmäßiger erwiesen, die Gummilagerung des Befestigungsbügels zu entfernen und den Drehkondensator auf dem Chassis start

Kombinationsfilter ZB_1 und ZB_3 (468 kHz + 10,7 MHz) haben sich die Straßer-Ausführungen BV 660 gut bewährt. Das kleine 10,7-MHz-Bandfilter ist ein Dreipunkt-Typ (B 10). Mischröhre und erste UKW-ZF-Röhre befinden sich unmittelbar zu beiden Seiten des UKW-Bandfilters ZB_2 . Zwischen den beiden ZF-Bandfiltern ZB_1 und ZB_2 ist die Röhre EAF 42 sichtbar. Diese Einzelteilanordnung gestattet eine günstige Verdrahtung unterhalb der Montageplatte, vor allem im kritischen HF-Teil.

Netzteil und Endstufe sind zu einer Baueinheit zusammengefaßt, die auf dem Chassis rechts vorn (von rückwärts gesehen) eingebaut wurde. Der Netztransformator, eine Spezialausführung für Selengleichrichter (Engel, Typ N 4 a), liefert sekundärseitig 300 V bei 80 mA. Die Heizwicklung ist für 6,3 V, 3,5 A dimensioniert und hat eine Anzapfung bei 4 V, die jedoch nicht ausgenutzt wird. Der Selengleichrichter AEG 250 B 60 verwendet den Sockel M. Er ist auf dem Chassis neben dem Netztransformator in einer Reihe mit den Elektrolytkondensatoren angeordnet. Die Endpentode EL 41 ist auf dem Chassis vor dem Netztransformator montiert, während die Schraubsicherung ein Aufbauelement, auf der Chassisrückseite (ganz rechts) befestigt ist. Die Buchsen sind von links nach rechts: die Antennen-Doppelbuchse A_1 , A_2 , die Ton-

Abgleichschema Vor- und Oszillatorkreis

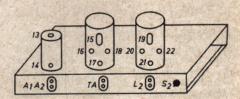
	Frequenz	Position Symbol		Bemerkungen		
U	85 MHZ 102 MHZ	1, 3	L ₇ , L ₆ T ₄ , T ₃	Auf Maximum trimmen		
к	5,9 MHZ 19 MHZ	11, 2 8, 5	L ₈ , L ₃ T ₅ , T ₁	Auf Maximum trimmen		
М	535 kHZ 1610 kHZ	10, 12 7, 9	L ₁₀ , L ₄ T ₆ , T ₂	Auf Maximum trimmen		

Abgleichfolge ZF-Teil

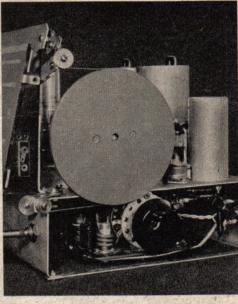
	Frequenz	Position	Bemerkungen
100000000000000000000000000000000000000	468 kHZ	15, 17, 19, 21	Der nicht abzuglei- chende Kreis des ZF- Bandfilters istjeweils
	10,7 MHZ	13, 14, 16, 18, 20, 22	zu dämpfen (z. B. Widerstand 5 kΩ)

Wickeldaten der UKW-Spulen

Spule	Wdg.	φ .	Draht	Windungs- abstand
L ₅	1	14 mm	0,5 mm Cu	
Le	3	12 mm	1,5 mm Cu	3 mm
L ₇	3	12 mm	1,5 mm Cu	3 mm


Wickeldaten der HF-Drosseln 1)

HF-Drossel	Wdg.	φ	Draht		
HD ₁	2×20	5 mm	0,3 CuL		
HD ₂	42	5 mm	0,3 CuL		
HD ₃	42	5 mm	0,3 CuL		


 $^1)$ Die HF-Drosseln sind ohne Windungsabstand jeweils auf einen Widerstand 1 $k\Omega,\,0,5\,W$ gewickelt. Der Widerstand ist der HF-Drossel parallelgeschaltet

zu befestigen. Akustische Rückkopplung war im Mustergerät nicht zu beobachten. Der Drehknopf für die Stationsabstimmung ist rechts unterhalb der Skala angebracht. Die auf der Drehkondensatorachse sitzende Antriebsscheibe hat einen Durchmesser von 105 mm. Der Drehkondensator hat auf dem Chassis seinen Platz oberhalb des Spulenaggregates, so daß sich kurze Verbindungen ergeben.

Mischröhre und ZF-Röhren sind auf dem Chassis rückwärts angeordnet. Als ZF-

Lage der Abgleichelemente für den ZF-Abgleich

Seitenansicht mit Spulenaggregat. Ganz vorn befindet sich die UKW-Oszillatorspule

abnehmerbuchse TA und der zweite Laut-

sprecheranschluß L_2 .
Die Untenansicht des Chassis mit der Verdrahtung läßt oben das Spulenaggregat erkennen. Widerstände und Kondensatoren sind meist direkt an den Röhrenfassungen angelötet. So ergeben sich kurze Verbindungen, die unerwünschte Kopplungen und Brummbeeinflussungen vermeiden. Im Originalgerät wird ein Chassis mit den Abmessungen 275×195 ×60 mm verwendet. Die Größe Chassis ist keineswegs kritisch. Die Einbautiefe kann unbedenklich um 40 mm verringert werden, falls das Chassis in ein Kleinformgehäuse eingesetzt werden soll.

Um hochqualitative Wiedergabe zu erzielen, muß ein permanentdynamisches Lautsprechersystem mit nicht allzu kleinem Korbdurchmesser verwendet werden. Für das Gerät hat sich ein Wigo-System mit 215 mm Membrandurchmesser bewährt (PM 215).

Der Empfängerabgleich beginnt mit dem Abgleichen des ZF-Teils. Man gibt die ZF-Spannung (468 kHz) an das Steuergitter der ECH 42, schältet zwischen und Masse; einen Steuergitter Widerstand und lötet die Verbindung zum Vorkreis ab. Ferner ist die Anodenspannung des Oszillators zu unterbrechen. Die Reihenfolge des Abgleichs geht aus der Tabelle hervor. Es ist darauf zu achten, daß die jeweils nicht abzugleichende Spule des ZF-Bandfilters z. B. mit einem 5-kΩ-Widerstand bedämpft wird. In ähnlicher Weise wird der FM-ZF-Teil (10,7 MHz) abgeglichen. Der Abgleich des Vor- und Oszillatorkreises entspricht dem allgemein üblichen Verfahren (L-Abgleich auf niedrigster, C-Abgleich auf höchster Frequenz). Der Abgleich des UKW-Bereichs ist mit besonderer Sorgfalt vorzunehmen.

Im Schaltbild und im Originalgerät sind ZF-Sperrkreise für 468 kHz und 10,7 MHz aus Ersparnisgründen nicht vorgesehen. Diese können jedoch im Antennenkreis leicht angeordnet werden, falls Störungen durch benachbarte Empfänger oder durch das Auftreten starker Harmonischer eines Ortssenders den Einbau erforderlich machen sollten.

Primärwicklungen des Gegentaktausgangstransformators einfach parallel-

Abb. 2 zeigt eine der vielen möglichen praktischen Verstärkerschaltungen, die nach dem neuen Prinzip entworfen und untersucht worden sind (entnommen aus "The General Radio Experimenter", Oktober 1951). Es handelt sich um einen 50-Watt-AB-Verstärker. Die Schaltung 50-Watt-AB-Verstärker. dürfte nach der Erläuterung des Prinzips ohne weiteres verständlich sein. Zu erwähnen ist, daß die beiden Primärwicklungen des Transformators wechselstrom-mäßig durch die drei 50-µF-Kondensatoren parallelgeschaltet sind. Bemerkens-wert ist die Zuführung der Schirmgitter-spannungen über die Primärwicklungen; die Schirmgitterströme durchfließen die Wicklungen in Gegenrichtung, so daß sich die durch diese Ströme im Transformatoreisen verursachten Flüsse gegenseitig aufheben. Die Glimmlampen dienen zur Stabilisierung der Schirmgitterspannungen, Wegen des Eintaktausganges des Verstärkers gestaltet sich die Gegenkopplung recht einfach; die Gegenkopplungsspan-nung ist an dem Verbindungspunkt der beiden in Reihe liegenden Endröhren abgenommen und an die Katode der Vor-röhre geführt. Für eine Ausgangsleistung von 50 Watt muß die Eingangsspannung 12,8 Volt betragen; der Klirrfaktor liegt bei dieser Leistung für Frequenzen zwischen 25 Hz und 15 kHz unterhalb von 1 %.

Das neue Schaltprinzip läßt sich selbst-verständlich auch an Verstärkern mit geringeren Sprechleistungen und mit allen anderen Röhrentypen verwirklichen, wenn auch sein wirklicher Vorteil erst bei großen Leistungen zutage tritt. Die hier wiedergegebene Schaltung eines erprobten Verstärkers soll lediglich als Anregung dienen.

Infolge der gleichstrommäßigen Reihenschaltung der Endröhren muß eine Betriebsspannung zur Verfügung stehen, die mindestens doppelt so groß ist wie bei einem normalen Gegentaktverstärker entsprechender Leistung. Diese hohe Spannung erfordert große Vorsicht bei den Versuchen und bei dem Aufbau eines derartigen Gerätes.

Gegentaktverstärker mit neuartiger Schaltung

Auf der Tagung des "Institute of Radio Engineers" am 21 März 1951 in New York wurde erstmalig ein Niederfrequenzverstärker vorgeführt, der eine Endstufe mit neuartiger Schaltung enthielt. Diese Schaltung eignet sich besonders für Tonfrequenz-Endverstärker mit großer Ausgangsleistung, also für Lautsprecheranlagen, für elektronische Musikgeräte und ähnliche Zwecke. Der Verstärker befindet sich noch im Versuchsstadium und läßt noch weitere Entwicklungen vermuten. Jedenfalls bietet sich hier für den Funkamateur eine Gelegenheit, die neue

Schaltung in seine Versuche einzubeziehen. Das neue Schaltprinzip, das in Abb. 1 schematisch dargestellt ist, kann die Grundlage für Gegentakt-A-Verstärker mit besonders niedrigem Klirrfaktor und für AB-Verstärker mit hohem Wirkungsgrad abgeben. Bei dem AB-Verstärker treten, ohne daß besondere Vorsichtsmaßregeln notwendig sind, nicht die sonst so störenden Einschwingvorgänge auf, die durch den plötzlichen Stromeinsatz in der Primärwicklung des Ausgangstransformators hervorgerufen werden. Bei der neuen Schaltung wird nämlich kein Gegentakt - Ausgangstransformator verwendet, vielmehr arbeiten die beiden Gegentaktröhren auf dieselbe Transformatorwicklung oder auf zwei parallel-geschaltete Wicklungen. Der Verstärker hat also einen Eintaktausgang. Außerdem hat die neue Schaltung die Vorzüge des galvanisch gekoppelten Verstärkers.

Die Schaltung ist aber ein wirklicher Gegentaktverstärker. Die beiden Gegentaktröhren V₂ und V₃ (Abb. 1) liegen hintereinander an der Anodengleichspannung. Zwischen dem Mittelpunkt dieser Reihenverbindung, also der Verbindung der Katode von V_2 mit der Anode von V_3 , und dem Mittelpunkt der Anodenspannung liegt der Verbraucher R_L, praktisch die Primärwicklung des Ausgangstransformators. Wechselstrommäßig sind somit die Ausgänge der beiden Gegentaktröhren parallelgeschaltet. V1 ist die Phasenumkehrröhre, die so geschaltet ist, daß die Eingangsspannung für jede der Gegentaktröhren zwischen Steuergitter und Kátode wirksam ist. Auf diese

Weise ergibt sich vollkommene Symmetrie für die Gegentaktstufe. Um das zu erreichen, darf der Anodenwiderstand R1 der Phasenumkehrröhre V₁ nicht zur Anodenspannung geführt, sondern muß an den Mittelpunkt der in Reihe geschalteten Röhren V_2 und V_3 gelegt werden. Anderenfalls würde nämlich V_2 als Katodenverstärker arbeiten.

Der neue Gegentaktverstärker bildet somit gewissermaßen eine Umkehrung des normalen Gegentaktverstärkers, bei dem die beiden Röhren gleichstrommäßig parallel, wechselstrommäßig aber hintereinander liegen. Darum beträgt auch bei der neuen Schaltung der optimale Widerstand des Verbrauchers nur ein Viertel gegen-über der normalen Schaltung mit den gleichen Röhren. Diese Forderung läßt sich leicht erfüllen, indem man die beiden

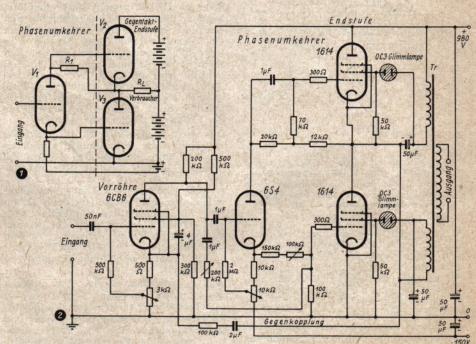


Abb. 1. Das Schaltprinzip des Gegentaktverstärkers mit Eintaktausgang. Abb. 2. Gegengekoppelter 50-W-AB-Verstärker nach der neuen Schaltung

Messungen an Antennen-Modellen

Der Neubau einer Antenne, ja, schon der Abgleich einer bereits vorhandenen Richtantenne sind Projekte, die nicht nur Zeit, Arbeit und Geld kosten, sondern meist auch erhebliche Aufregung und Beunruhigung unter den Mitmenschen verursachen. Dies sind Gründe, die oft dazu zwingen, gerade den wichtigsten Teil der Kurzwellenstation zu vernachlässigen. Jeder Neubau und jede Veränderung einer Antenne muß daher sorgfältig vorbereitet werden. Eingehend wird zu prüfen sein, ob die zu erwartende Verbesserung den Aufwand — und die Beunruhigung des Herrn Hauswirts — auch lohnt.

Da diese Voruntersuchungen nur mit Hilfe der Handbücher auf dem Papier stattfinden können, sind Mißerfolge leider nicht ausgeschlossen. Nur selten stimmen die örtlichen Gegebenheiten mit den idealisierten Voraussetzungen der in den Handbüchern gezeigten Richteigenschaften überein: Häuser stehen im Wege, die — im gleichen Größenverhältnis — angebracht und über Kabelleitung mit einem Bolometer-Empfänger verbunden. Nun wird das Modell aus über 10 Wellenlängen Entfernung mittels eines Horn-Richtstrahlers mit Zentimeterwellen bestrahlt. Während das Modell gedreht und geschwenkt wird, schreibt eine mit dem Dreh- und Schwenkmechanismus gekoppelte Registrieranlage, die vom Bolometer-Empfänger gesteuert wird, in Kurvenform die Richtcharakteristik der jeweils untersuchten neuen Flugzeugantenne auf.

Wenn es gelingt, dieses Prinzip bei erheblicher Vereinfachung und Verbilligung auf Amateurverhältnisse umzustellen, dann ist auch dem Amateur Gelegenheit gegeben, den wahren Wert eines Neubaus oder einer Veränderung der Antennen am Modell zu überprüfen. Im folgenden wird ein Verfahren beschrieben, das diese Möglichkeit bietet.

Abb. 1. Chassisunteransicht des einfachen 50-cm-Modellsenders

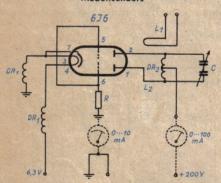


Abb. 2. Schaltung des 50-cm-Senders. $C=2\times5$... 10 pF, $R=3000~\Omega/2~W$, $DR_1=12~Wdg$, 0,8 mm ϕ CuL, 20 mm lang, 5 mm Durchmesser; $DR_2=12~Wdg$ auf 100 $\Omega/1$ -W-Widerstand; $L_1=$ Haarnadel-Schleife 2 ... 3 cm lang; $L_2=2$ Stück 3-mm-Cu-Draht, 5 cm lang, Abstand 1,5 cm

Antenne muß weit niedriger als empfohlen angebracht werden, und was es
an Hindernissen dieser Art mehr gibt.
Beim Bau von Flugzeugen z. B. trifft man
aus aerodynamischen Gründen auf ähnliche Schwierigkeiten in der Ausführung
der Antennenanlage. Die US Air Forces
fand folgenden Ausweg¹).

An einem maßstäblichen Modell des neuen Flugzeugs wird die Probeantenne

Der Sender

Abb. 1 zeigt den Aufbau eines 50-cm-Senders (600 MHz) mit einer 6 J 6, Abb. 2 zeigt seine Schaltung. Zum Bau werden außer der Röhre und ihrem Sockel nur noch ein Doppeldrehkondensator in Miniaturausführung, ein Widerstand und ein paar UKW-Drosseln benötigt. Der "Schwingkreis" besteht aus einer Halbwellenleitung, an deren einem Ende die Röhrenkapazitäten, an deren anderem Ende der Doppeldrehkondensator verkürzend wirken. Ungefähr in der Mitte der Leitung wird über kleine UKW-Drosseln (auf Widerstände gewickelt) die Anodenspannung zugeführt.

Zum Abgleich des Senders berührt man mit einem Bleistift die Halbwellenleitung etwa in ihrer Mitte. Der Punkt, an welchem die eintretende Veränderung des Gitter- oder Anodenstromes am geringsten ist (Strombauch), ist derjenige, an dem die UKW-Drosseln fest angelötet werden. Bei einer Anodenspannung von 200 Volt ist bei voller Belastung durch ein Lämpchen (1½ Watt), das bei richtiger Einstellung der Linksschleife hell leuchtet, der Anodenstrom etwa 35 mA. Wichtig ist, daß das U-förmige Chassis durch ein Bodenblech geschlossen wird, da sich sonst über die Hälfte der HF-Leistung durch direkte Abstrahlung aus der Halbwellenleitung verflüchtigt.

Die 50-cm-Wellenlänge ist die niedrigste mit einer 6 J 6 und ähnlich primitiven Mitteln noch herstellbare Sendewelle, deren HF-Energie für praktische Messungen noch genügend groß ist (rd. 1,5 W). Sie läßt außerdem so kleine Antennenmodelle zu, daß Halbwellen-Dipole (25 cm lang) aus 3 mm starkem Kupferdraht noch sehr stabil freitragend ausgeführt werden können. Auch ist der Maßstab 1:20, dem das Verhältnis 600 MHz:30 MHz entspricht, für alle Nachbildungen bequem zu handhaben.

Abb. 3 zeigt den Aufbau der ganzen Sendeanlage mit dem Netzteil, einem Meßinstrument (Anodenstrom 0 ... 100 mA, Gitterstrom 0 ... 10 mA), dem Sender und der Testantenne, die von einem drehbaren Mast (Pertinaxrohr) getragen wird. Als Speiseleitung dient ein Stück 300-Ohm-Leitung.

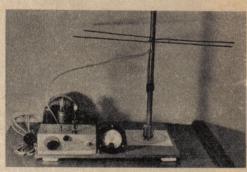


Abb. 3a. Aufbau der gesamten Sendeanlage

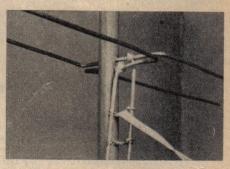


Abb. 3b. Speisung der Modell-Sendeantenne über eine 300-Ohm-Leitung

Die Meßeinrichtung

Der Meßdipol, ein Faltdipol, ist aus Kupferdraht gebogen. Abb. 4 läßt erkennen, wie die Meßeinrichtung geschaltet ist. Das 50-µA-Instrument sichert die erforderliche Empfindlichkeit. Die Meßeitung muß abgeschirmt werden, um Streukopplungen auszuschalten, welche die Meßergebnisse verfälschen würden.

Aus dem gleichen Grunde muß der Meßdipol an einer Angelrute von mindestens 3 Meter Länge befestigt werden, an deren unterem Ende das Anzeigeinstrument angebracht ist. Nur so können starke Reflexionserscheinungen, vom Körper des Messenden hervorgerufen, ausgeschaltet werden.

Ausführung der Messungen

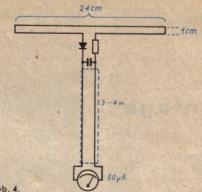
Das Meßverfahren ist umgekehrt im Vergleich zum US-Air-Forces-Verfahren: Der Sender speist die Testantenne, während die abgestrahlte Leistung mit dem Meßdipol abgetastet wird. Zunächst wird der Meßdipol nur etwa einen Meter entfernt von der Testantenne aufgestellt. Nun wird der Sender eingeschaltet und die Linkschleife lose mit der Halbwellen-Leitung gekoppelt. Die Testantenne wird jetzt wie üblich auf maximale Feldstärke abgestimmt. Mit dem Kurzschlußbügel wird die Antennenresonanz eingestellt und durch Verändern des Anzapfpunktes die 300-Ohm-Leitung angepaßt. Obwohl auch bei Fehlanpassungen eine meßbare Leistung abgestrahlt wird, ist doch die richtige Einstellung deutlich an einem Feldstärke-Minimum zu erkennen. Auch sinkt bei richtiger Einstellung der Senderund Antennenanordnung die abgestrahlte Leistung beiderseits der ursprünglich am Drehkondensator eingestellten Frequenzmarkierung deutlich ab. Das Stehende-Wellen-Verhältnis läßt sich prüfen, indem die 300-Ohm-Leitung mit einem

¹⁾ CQ, Mai und August 1951.

Finger abgetastet wird; die Einstellung ist richtig, bei der an jeder Stelle entlang der Leitung die gleiche Veränderung der abgestrahlten Leistung (Meßdipol) eintritt. Bei voller Sendeleistung und optimaler Abstimmung bzw. Anpassung der Testantenne ergibt sich in der Hauptstrahlrichtung noch in einer Entfernung der siebenfachen Wellenlänge ein Instrumentenausschlag von 40 ... 45 µA.

Absolute Werte für die jeweils erzielte Verstärkung (in db) können mit einer so primitiven Anlage nicht gemessen werden (auch die US-Air-Forces-Anlage verzichtet darauf). Die Eigenschaften bzw. die Vor- und Nachteile einer Antenne lassen sich indessen auch aus der Form (Maxima) der Kurven erkennen, die nach den gewonnenen relativen Meßergebnissen (umgerechnet in db) gezeichnet, die Richtcharakteristik der Testantenne veranschaulichen. Hierbei sind direkte Rückschlüsse auf die horizontale Strahlbreite bzw. vertikale Bündelung möglich.

Ergebnisse

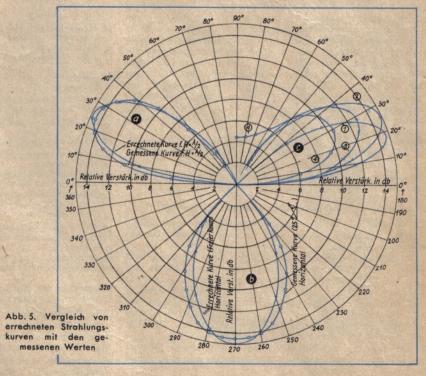

Eine unerläßliche Voraussetzung für die Brauchbarkeit solcher in Kurvenform niedergelegten Meßergebnisse ist natürlich, daß die Verhältnisse am Modell den in der Praxis vorherrschenden und maßgebenden Verhältnissen weitgehend entsprechen. Um hierfür einen Anhalt zu gewinnen, wurde zunächst eine 2-section-8 JK-Antenne (Abb. 3) gebaut und näher untersucht.

Die Meßwerte, die das Instrument des Meßdipols anzeigte, waren anfangs sehr unstabil. Schon eine Armbewegung oder eine Körperwendung genügte, um den Zeiger des Instruments wild pendeln zu lassen. Als erste Verbesserung wurde daher die Angelrute eingeführt, die diese Körperreflexionen ausschaltete.

Die Minima der Richtcharakteristik waren flach und unscharf. Es stellte sich heraus, daß die Meßleitung entlang der Angelrute abgeschirmt werden mußte, um Streukopplungen zu verhindern. Die Netzleitung durfte nur geradlinig vom Sender wegführen, und zwar nur in der dem Meßdipol, also der Senderichtung abgewandten Richtung. Beide Maßnahmen enttrübten die Minima erheblich und trugen weiter zur Stabilisierung der Meßwerte bei.

Der Meßdipol wurde bei allen Messungen so gehalten, daß sich der jeweils größtmögliche Stromwert ergab. Bei horizontaler Polarisation der Testantenne war hierzu auch horizontale Lage des Meßdipols erforderlich. Die Antennenachse mußte stets rechtwinklig zur Linie Testantenne—Meßdipol ausgerichtet werden. Nun ließen sich Kurven erzielen, die den errechneten Werten sehr nahekamen. Dennoch zeigten sich noch zwei Einflüsse, die innerhalb des Hauses nicht zu beseitigen waren: Jede Wand reflektierte, und zwar mit dem Meßdipol nachweisbar bis zu Entfernungen von 3 bis 4 m; über Dielenboden wurden vertikale Richtkurven erzielt, die deutlich erkennen ließen, daß die "reflektierende" Schicht weit unter den Dielen lag. Beide Einflüsse verschwanden, sobald die Messungen im Freien vorgenommen wurden.

Wie Abb. 5a und 5b zeigen, weichen die unter diesen Verhältnissen erzielten Kurvenformen nur noch geringfügig von errechneten Kurven ab. Diese Messungen scheinen also zu beweisen, daß die beschriebene Anordnung bei sorgfältiger Bedienung dazu dienen kann, Modellversuche mit Richtantennen durchzuführen und deren Ergebnisse direkt in die Praxis zu übertragen.

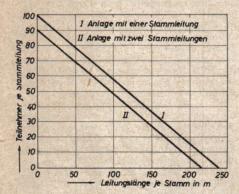

Schaltung der Meßanlage mit einem Faltdipol

Die 8 JK-Antenne wurde noch aus einem weiteren Grunde als Probeantenne ausgewählt. Sie ist eine der umstrittensten Antennen überhaupt. Beim Verfasser lagen praktische Ergebnisse von zwei verschiedenen Ausführungen vor:

a) Eine 2-section-8 JK-Antenne für das 20-m-Band hatte bei einer Höhe von 6 bis 7 m über trockenem Sandboden gute Ergebnisse im Verkehr mit Südamerika gebracht.
b) Eine andere 2-section-8 JK-Antenne

b) Eine andere 2-section-8 JK-Antenne für das 10-m-Band hatte bei einer Höhe von 2 bis 3 m über einem flachen Dach zufriedenstellend als Drehrichtstrahler genen und dem Inhalt eines Steinbaukastens ein Modellhaus errichtet, dessen Dach etwa 13 cm unter den Antennenstrahlern lag. Kurve Nr. 3 in Abb. 5c zeigt, wie durch den Einfluß des "Hausdaches" der Hauptstrahl in die Höhe gedrückt wird (25 ... 30 Grad). Bei einem für das 10-m-Band günstigen Erhebungswinkel von 9 ... 10 Grad ist die abgestrahlte Leistung schon um 6 db kleiner als bei der optimalen Richtung von 30 Grad; die brauchbare Wirkung der Antenne in der Praxis ist also hauptsächlich auf die horizontale Bündelung zurückzuführen.

Hierauf wurde das Haus so weit erhöht, daß die Entfernung vom Dach zur Antenne nur noch 6 cm war. Die 4. Kurve in Abb. 5c, die unter diesen Bedingungen aufgenommen wurde, zeigt ganz deutlich, warum diese Antenne im 10-m-DX-Ver-kehr versagen mußte. Modell und Praxis stimmen übrigens auch insofern durchaus überein, als die unbrauchbare 10-m-Richtantenne verhältnismäßig große Lautstärken bei "short-skip"-Bedingungen brachte. Diese Versuche beweisen, daß für die Höhe der Antenne über der reflexionswirksamen Schicht nicht der Abstand Antenne-Erdboden, sondern der Abstand Antenne—Hausdach (Ziegeldach) eingesetzt werden muß, weil er die tat-sächlich eintretende Abstrahlung maß-gebend beeinflußt.


arbeitet, bei Erniedrigung auf 1,5 m Höhe über dem Dach (das Trägerrohr hielt dem Winddruck nicht stand) aber völlig versagt.

Uber Ackerboden ergab die abgebildete 8 JK-Antenne die in Abb. 5c dargestellte Kurve Nr. 1. Unter der Annahme, daß Ackerboden und trockener Sandboden keinen nennenswerten Unterschied als Reflexionsebenen aufweisen, ist leicht einzusehen, daß die Antenne bei einem optimalen Abstrahlwinkel von 15 ... 25 Grad gute DX-Ergebnisse liefern konnte. Zum Vergleich wurde in Abb. 5c als Kurve Nr. 2 die errechnete Strahlungscharakteristik einer solchen 8 JK-Antenne bei einer Antennenhöhe von $\lambda/2$ eingezeichnet.

Über feuchtem Erdreich wurde nun unter der 8 JK-Modell-Antenne aus Ziegelstei-

An Stelle der hier untersuchten 8 JK-Antenne können natürlich auch alle anderen Antennenformen nachgemessen werden. Es muß jedoch erneut darauf verwiesen werden, daß absolute Verstärkungs-messungen (in db) mit der beschriebenen Anordnung nicht möglich sind. Hierfür sind die Einflüsse der Anpassung zwischen Speiseleitung und Antenne, der Senderleistung und -ankopplung nicht konstant genug, vor allem aber nicht meßbar. Die erzielten Meßwerte ergeben aber Richtkurven, deren Formen und Maxima weitgehend mit errechneten Werten übereinstimmen und daher auch Rückschlüsse auf jene Abweichungen zulassen, die durch das Mißverhältnis zwischen dem in der Theorie Vorausgesetzten und dem praktisch Möglichen hervorgerufen werden

Welche Antennenanlage ist die günstigste?

Netzplanungsdiagramm zur Bestimmung der zulässigen bei Ge-nen - An-Leitungslängen meinschaftsantennen - An-lagen mit Verstärker für den LMK- und UK-Wellenbereich

Stabantenne mit UKW-Faltdipol und Reflektor. rechts: Die Siemens-Stab-antenne ist gegen Überspannungen durch Blitzeinschläge fünffach gesichert

Grobblitzschutz unmittelbar (1) am Jsolator Peinfunkenstrecke im 3 Direkte Erdung des Standrohres Antennenableiter nach VDE mit 0,1mm Funkenstrecke bei 1cm² Querschnitt Schirm des Teilnehmer-netzes liegt direkt an Erde

Der Bau von Antennenanlagen, bis vor kurzem praktisch nur von wenigen Spezialfirmen betrieben, gewinnt in letzter Zeit auch in Kreisen des Rundfunk- und Elektrohandwerks immer mehr Anhänger. Von der Verbraucherseite her ist ein echter, ansteigender Bedarf für gute Antennenanlagen festzustellen. Man begnügt sich nicht mehr mit dem Rundfunkhören schlechthin, sondern verbindet mit diesem Hören auch den Wunsch nach Qualität. Desgleichen ist es für den Besitzer eines Mietshauses im Endeffekt billiger, eine Gemeinschafts-Antennenanlage einzubauen, als jedem einzelnen Mieter den Bau einer eigenen Antenne zu überlassen, bei dem das Haus immer in Mitleidenschaft gezogen werden kann.

Die Herstellerfirmen haben die Antennentechnik so vervollkommnet, daß heute auch der Nichtspezialist mit dem gelieferten Material einwandfrei funktionierende Antennenanlagen aufbauen kann.

Die Eignung eines Antennenfabrikates ist am besten nach folgenden Gesichtspunkten zu beurteilen:

Welches Programm an Antennenanlagen steht zur Verfügung?

Der Kunde will stets die für seinen besonderen Fall gunstigste Lösung erhalten. Daher muß eine gewisse, nicht zu kleine Anzahl von Anlagentypen vorhanden sein.

Es hat sich als zweckmäßig erwiesen, die einzelnen Anlagen nach Wellenbereichen und Teilnehmerzahlen zu unterscheiden. Neben den Anlagen für die Wellenbereiche LMK müssen spezielle Anlagen für den UKW-Bereich vorhanden sein, ferner Ergänzungseinrichtungen zu den bereits vorhandenen LMK-Anlagen und schließlich Anlagen für alle vier Wellenbereiche LMK und UK. Für die Zukunft muß dazu noch die Ubertragung des Fernsehbandes von 174 bis 216 MHz berücksichtigt werden.

Betrachtet man daraufhin das Fertigungsprogramm der Firma Siemens & Halske AG, das als Beispiel diesen Ausführungen zugrunde gelegt ist, so ergibt sich folgendes Bild:

- a) Antennenanlagen für 1 Teilnehmer mit der Stabantenne SAA 102, b) Gemeinschaftsantennenanlage für 2 bis 8 Teilnehmer mit der Antennen-
- verteilerdose SAD 503,
- Gemeinschaftsantennenanlage bis 80 Teilnehmer mit Antennenverstärker
- d) Großanlagen bis 600 Teilnehmer mit Antennenverstärker SAV 303 W

Antennenspannungs meßgerät SAM 305 W, das z.B. zur Ausrüstung Siemens-Anten nenspezialisten gehört und zur hochfrequenz-mäßigen Überprüfung der fertiggestellten Antennenanlagen dient

II. UK-Wellenbereich

- a) Antennenanlagen für 1 Teilnehmer mit UKW-Faltdipol SAA 104 bei Montage der UKW-Antenne am Fenster,
- b) Antennenanlage für 1 Teilnehmer mit UKW-Faltdipol SAA 104 bei Montage der UKW-Antenne im Dach.
- III. Zusatzanlagen zur Ergänzung vorhandener LMK-Anlagen auf den UK-Wellenbereich
- a) Für 1 Teilnehmer, Anlagen gemäß IIa oder IIb,
- b) für Gemeinschaftsantennenanlagen.

UKW-Antennenumsetzer SAV 306 W mit UKW-Faltdipolantenne SAA 104.

IV. LMK- und UK-Wellenbereich

- a) Antennenanlagen für 1 Teilnehmer mit Stabantenne SAA 102 und UKW-
- b) Gemeinschaftsantennenanlage für 2 bis 8 Teilnehmer mit der Antennenverteilerdose SAD 506,
- c) Gemeinschaftsantennenanlage bis 50 Teilnehmer mit Antennenverstärker SAV 307 W.
- d) Großanlagen bis 400 Teilnehmer mit Antennenverstärkern SAV 307 W.

In Vorbereitung befinden sich: Fernsehantennenanlage für 1 Teilnehmer, Fernseh-Gemeinschaftsantennenanlage für 2 bis 8 Teilnehmer, Fernseh-Gemeinschaftsantennenanlage bis 50 Teilnehmer, Ergänzungseinrichtungen zur Nachrüstung der LMKUK-Gemeinschaftsantennenanlage bis 50 Teilnehmer für das Fernsehgebiet

Entsprechen die Antennenanlagen bezüglich der Nutzhöhe und ihrer Sicherheit den VDE-Vorschriften?

Jedes Rundfunkgerät spricht auf die Nutzspannung an, die an seinem Antenneneingang liegt. Trotzdem ist es nicht sinnvoll, als Maß für die Güte einer Antennenanlage die Größe dieser Nutzspannung zu wählen. Vielmehr gilt hier der Begriff der Nutzhöhe H_{n} (gemessen in m), d. h. die zu einem beliebigen Sender gehörende, am Empfänger liegende Nutzspannung $U_{\rm n}$ (V) dividiert durch die zu dem gleichen Sender am Ort der Antenne gehörende Feldstärke & (V/m):

$$H_{\rm n} = \frac{U_{\rm n}}{\mathfrak{E}}$$

Mit der Nutzhöhe ist man also von dem zufälligen Abstand des Empfängers vom Sender und den Ausbreitungsverhältnissen unabhängig und hat ein Maß für die Wirksamkeit der Antennenanlage.

Der Luftleiter jeder Antennenanlage wird zur Erzielung einer möglichst hohen Nutzspannung zumeist weit über dem Dach aufgestellt und ist daher mit Rücksicht auf seine Gefährdung durch Blitzeinschläge nit einem besonderen VDE-mäßig vorgeschriebenen Antennenableiter mit einer Funkenstrecke von 0,1 mm bei einer Elektrodenfläche von 1 cm² zu sichern. Ebenso muß von einer einwandfreien Gemeinschaftsantennenanlage gefordert werden, daß die durch die angeschalteten Allstromgeräte fließenden Ladeströme der Schutzkondensatoren ohne jegliche Gefährdung irgendeines Teilnehmers sicher nach Erde abgeleitet werden; das Teilnehmernetz ist deshalb einwandfrei zu erden. Bei den beschriebenen Einzelantennen und den Gemeinschaftsantennenanlagen mit Verstärker wird bei dem ungünstigsten Teilnehmer eine Nutzhöhe von 1 m garantiert. Eine einwandfreie Gewähr für die Einhaltung dieses Wertes ist bei den Verstärkeranlagen durch Netzplanungsdiagramme gegeben, die es gestatten, zu jeder Anlage für eine bestimmte Teilnehmerzahl die höchstzulässige Leitungslänge abzulesen. Damit ist schon bei der Projektierung die Einhaltung der Mindestnutzhöhe sichergestellt.

Bei den Gemeinschaftsantennenanlagen ohne Verstärker wird das sogenannte Sternverteilungssystem in Verbindung mit äußerst verlustarmen Übertragern und dämpfungsarmen Leitungen verwendet, so daß ein Maximum an Nutzspannung bei jedem Teilnehmer erreicht wird.

Welche Dienste stellt die Lieferfirma zur einwandfreien Funktion der Antenmenanlagen zur Verfügung?

Trotz größter Sorgfalt beim Bau einer Antennenanlage kann es gelegentlich vorkommen, daß sich bei der Montage ein Fehler einstellt. Das Auffinden eines solchen versteckten Fehlers setzt meist recht genaue theoretische Kenntnisse und eine Anzahl von Spezial-Meßgeräten voraus. Es ist daher oft für den die Montage der Antennenanlage ausführenden Unternehmer wünschenswert, sich bei der Einarbeitung seines Personals und in schwierigen praktischen Fällen auf eine tätige Mithilfe durch ständig geschulte Spezialisten der technischen Büros der Lieferfirma stützen zu können.

Auf Wunsch werden auch Abnahmemessungen an fertiggestellten Antennenanlagen ausgeführt. Außerdem kann ein Revisions-Vertrag für die Antennenanlage abgeschlossen werden. Bei Zahlung einer Pauschalgebühr wird dann von der Lieferfirma eine laufende Wartung der Antennenanlage vorgenommen.

Welche Anlagensysteme und Leitungsarten werden bei Antennenanlagen verwendet?

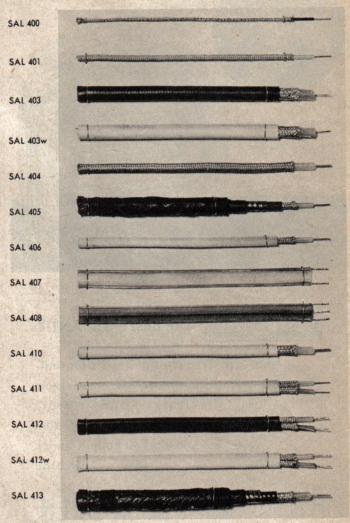
Nach Teilnehmerzahlen geordnet, lassen sich grundsätzlich drei Arten von Antennenanlagen unterscheiden:

- 1. Einzelantennenanlagen,
- 2 Gemeinschaftsantennenanlagen ohne Verstärker,
- 3. Gemeinschaftsantennenanlagen mit Verstärker.

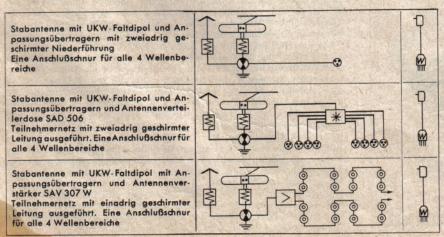
Bei allen Anlagen ohne Verstärker muß im Interesse einer hohen Nutzspannung für eine möglichst verlustarme Übertragung der Antennenenergie zu den angeschalteten Teilnehmern gesorgt werden. Dies wird erreicht durch genaue Anpassung der einzelnen Übertragungsglieder der Anlage, durch die Verwendung von verlustarmen Leitungen und durch geeignete Anlagensysteme.

Setzt man voraus, daß die Anpassung optimal ausgeführt wurde, so läßt sich bei den Einzelanlagen nur durch dämpfungsarme Leitungen eine höhere Nutzspannung beim angeschalteten Teilnehmer erzielen, da das Anlagensystem keine Variationsmöglichkeiten zuläßt. Man wird bei Anlagen mit einem Teilnehmer stets direkte und kürzeste Verbindung zwischen Antenne und Empfänger ausführen.

Bei den Gemeinschaftsantennenanlagen ohne Verstärker ist neben der optimalen Anpassung und der Leitungsdämpfung das verwendete Anlagensystem für die Nutzspannung bei den einzelnen Teilnehmern von entscheidender Bedeutung. Es sind heute für derartige Anlagen 2 Systeme gebräuchlich: das Sternverteilungssystem und das Durchschleifsystem.


Das Sternverteilungssystem ergibt wesentlich höhere Empfangsspannungen bei allen Teilnehmern als das Durchschleifsystem. Dabei sind die Spannungen an den einzelnen Anschlußdosen etwa gleich groß; die größeren Leitungslängen dieses Systems gegenüber dem Durchschleifsystem werden durch den Vorteil der höheren Nutzspahnung voll gerechtfertigt.

Das Durchschleifsystem ergibt kürzere Leitungslängen als das Sternsystem, hat jedoch diesem gegenüber den Nachteil, daß die angeschalteten Teilnehmer sehr unterschiedliche und wesentlich kleinere Spannungen erhalten. Der letzte Teilnehmer hat bei sonst gleichen Bedingungen im Durchschleifsystem eine um 60 % geringere Nutzspannung als im Sternverteilungssystem. Da bei den Gemeinschaftsantennenanlagen ohne Verstärker keine Spannungsreserven vor-


hangen sind, ist ein so hoher Spannungsverlust nur in Gebieten mit besonders guten Empfangsverhältnissen in allen Wellenbereichen tragbar.

Bei den Gemeinschaltsantennenanlagen mit Verstärker sind das Durchschleifsystem, das Stichleitungssystem und die Mischung beider Systeme gebräuchlich. Durch die Verstärker können auftretende Übertragungsverluste ausgeglichen werden. Das gewählte Anlagensystem hat daher auf die Spannung bei den einzelnen Teilnehmern keinen entscheidenden Einfluß. Aus Gründen der besseren Übersicht über den Anlagenaufbau und der sich ergebenden kürzeren Leitungslängen wird man jedoch im allgemeinen dem Durchschleifsystem den Vorzug geben.

Die Antennenleitung muß zwei Aufgaben erfüllen. Einmal soll sie die Antennenenergie mit möglichst geringen Verlusten zu den einzelnen Teilnehmern führen, zum anderen soll die Störbeeinflussung der Leitung so gering sein, daß das von der Antenne her vorhandene Nutz-Stör-Verhältnis durch die Übertragung über die Leitung nicht verschlechtert wird. Daneben spielt selbstverständlich auch die Wirt-

Antennenleitungen nach Typenbezeichnungen geordnet

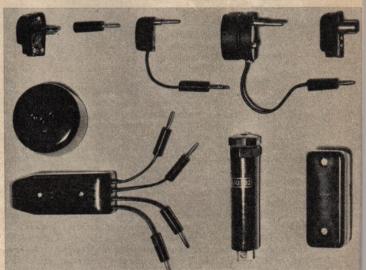
Prinzipieller Aufbau von Antennenanlagen für 1, 8 und 50 Teilnehmer für den LMK- und UK-Wellenbereich

DIE BESTE GARANTIE

sind die Erfahrungen mit dem millionenfach bewährten modernen Elektrolyt-Kondensator, dessen räumliche Vorteile gleichfalls außer Zweifel stehen. Deshalb:

HYDRA-KONDENSATOREN

für die Radio- und Fernseh-Technik


zu verwenden, heißt Schritt halten, denn sie entsprechen stets den neuesten Bedürfnissen dieser Fachgebiete. Sie werden von einem Unternehmen hergestellt, das seit Jahrzehnten auf Kondensatoren spezialisiert ist.

HYDRAWERK AKTIENGESELLSCHAFT BERLIN N 20

schaftlichkeit eine maßgebende Rolle, da man vernünftigerweise stets die Leitung wählen wird, die den gewünschten Zweck mit dem gezingsten Aufwand bei bequemster Montagemöglichkeit erfüllt.

Bezüglich der Verluste ist die konzentrisch geschirmte Leitung der symmetrisch geschirmten Leitung eindeutig überlegen, da sie bei gleichem Aufwand und gleichem Isoliermaterial eine wesentlich geringere Dämpfung besitzt als die symmetrische Leitung. Ein weiterer Vorteil der konzentrisch geschirmten Leitung ist darin zu sehen, daß sie infolge ihres einfachen Aufbaues leichter zu montieren ist als die symmetrisch geschirmte Leitung und daher auch weniger Fehlermöglichkeiten ergibt.

Für die Güte einer Leitung in bezug auf Störempfindlichkeit von außen her ist bekanntlich deren Kopplungswiderstand maßgebend. Würde man nur die Leitung für sich allein betrachten, so käme man zu dem Ergebnis, daß die symmetrisch geschirmte Leitung, die den geringsten Kopplungswiderstand besitzt, die beste Leitung sein müßte. Es zeigt sich aber, daß außer der Störbeeinflussung über den Kopplungswiderstand der Leitung noch Störungen über die Eingangsschaltung des Rundfunkgerätes und direkt über dessen ungeschirmten Eingang eingeschleift werden. Gegenüber diesen Störungen kann der Störanteil, der durch die Leitungen selbst auftritt, vollständig vernachlässigt werden. Eine Verbesserung des Leitungsaufbaues muß also ohne jede praktische Bedeutung bleiben. Die symmetrisch geschirmte Antennenleitung, die eine wesentlich höhere Dämpfung und einen komplizierten Aufbau besitzt, ist ferner gegenüber der konzentrischen einadrigen Leitung teurer. Ihr höherer Aufwand bringt keinen Gewinn, da der in ihrem geringeren Kopplungswiderstand liegende Vorteil bei Antennenanlagen nicht in Erscheinung tritt.

Einige Kleinbauteile für Antennenanlagen: Antennensteckdose, Stecker und Übertrager

Bei den Siemens-Gemeinschaftsantennenanlagen ohne Verstärker wird zur Erzielung einer möglichst hohen Teilnehmerspannung für alle Wellenbereiche das Sternverteilungssystem angewendet, bei den Gemeinschaftsantennenanlagen mit Verstärker das Durchschleifsystem, das Stichleitungssystem und die Kombination beider Systeme. Bei allen diesen Antennenanlagen werden außerdem in Übereinstimmung mit den vorerwähnten Gegebenheiten einadrig konzentrische Leitungen verwendet.

Zweckmäßigkeit, Schönheit und Sorgfältigkeit der Ausführung

Obwohl man für die technischen Lösungen der einzelnen Antennenfirmen keine allgemein gültigen Kriterien angeben kann, lassen sich an Hand der vorhandenen Ausführungen Vergleiche über ihre Zweckmäßigkeit anstellen. So findet man beispielsweise Firmen, die bei jedem Teilnehmer 2 Steckdosen mit 2 Empfänger-Anschlußschnüren— je eine für den LMK- und UKW-Bereich— vorsehen. Es gibt aber auch Firmen, bei denen für alle Wellenbereiche nur 1 Steckdose und Anschlußschnur bei jedem Teilnehmer notwendig ist. Die Lösung mit einer Dose ist naturgemäß praktischer als die mit 2 Dosen, da sie eine einfachere Montage und bequemere Handhabung durch die Benutzer gewährleistet. Ebenso ist es z. B. zweckmäßig, für den Aufbau der verschiedenen Formen der UKW-Antenne stets gleiche Elemente in verschiedenen Väriationen zusammenzusetzen, als für jede Antennenform eine eigene Type herauszubringen.

Auch die Schönheit der einzelnen Bauteile sollte ausreichend beachtet werden, da sich die Kunden von einer nicht gelungenen Form oft auch dann abschrecken lassen, wenn sie zu einem technisch sonst einwandfrei aufgebauten Teil gehört.

Schließlich darf auch die Sorgfältigkeit der Ausführung der einzelnen Antennenteile nicht übersehen werden, da die Sicherheit für das einwandfreie Funktionieren der gesamten Anlage davon abhängt, mit welcher Sorgfalt die einzelnen Teile hergestellt sind.

Werkstattwinke

Der Empfänger als Schwebungssummer

Um Empfänger oder einzelne Lautsprecher auf Klirren und Resonanzstellen überprüfen zu können, ist eine kontinuierlich veränderbare Tonfrequenz erforderlich, die im allgemeinen von einem Schwebungssummer geliefert wird. Im Schwebungssummer wird eine feste und eine veränderbare HF erzeugt und gemischt. Aus der eingestellten Differenz zwischen den beiden Frequenzen bildet sich dann als Schwebung die gewünschte Tonfrequenz.

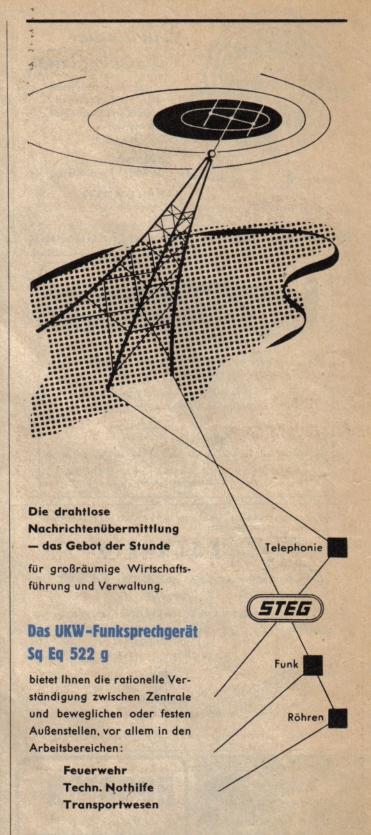
Auch im Empfänger entsteht ein Schwebungston (Pfeifton), wenn die Frequenzen zweier benachbarter Sender gemischt werden und ihre Differenz im Hörbereich liegt. Ist diese Erscheinung auch störend und unerwünscht, so läßt sich nach diesem Prinzip doch eine kontinuierlich veränderliche Tonfrequenz wie im Schwebungssummer erzeugen.

Da uns im allgemeinen nur ein Meßsender, also eine HF, zur Verfügung steht, müssen wir eine Frequenz wählen, die sich doppelt ausputzen läßt. Wir wählen z.B. als Empfangsfrequenz und auch als unmodulierte Meßsenderfrequenz ZF/2. Es entsteht nach Mischung mit der Oszillatorfrequenz eine ZF. Die zweite Oberwelle der HF (2×HF) entspricht dann ebenfalls der ZF, geht über Mischstufe und ZF-Verstärker und mischt sich schließlich an der Diode mit der im Empfänger aus HF und Oszillatorfrequenz entstandenen ZF. Es bildet sich eine Schwebungsfrequenz, gleich der Differenz zwischen der im Empfänger entstandenen ZF (Oszillatorfrequenz minus HF) und 2×HF = ZF. Diese Differenz und damit der entstehende Schwebungston läßt sich mit der Abstimmung des Empfängers (Oszillatorfrequenz) oder mit der Abstimmung des Meßsenders variieren.

Bei dieser niedrigen HF ändert sich bei der Abstimmung die Frequenz verhältnismäßig langsam; der gewünschte Ton (Schwebungsfrequenz) ist gut einzustellen.

Man kann als HF auch $2\times ZF$ wählen. Während die HF mit dem Oszillator zusammen eine ZF bildet, spricht der ZF-Verstärker auch auf HF/2 an. An der Diode liegen wieder zwei Zwischenfrequenzen, deren Differenz wie im ersten Fall einstellbar ist. Eine dritte Möglichkeit ist, als Meßsenderfrequenz die ZF zu wählen und den Empfänger auf $2\times ZF$ abzustimmen. Ein etwa vorgeschalteter ZF-Saugkreis ist aufzutrennen.

Auf diese Weise läßt sich der betreffende Empfänger auf Klirren und Schwirren, die von Skalenscheiben, Zeigern, losen Schrauben und Scheiben, Abschirmungen, freihängenden Leitungen, Isolierschläuchen usw. herrühren können, mit einem Meßsender durchheulen und überprüfen. Der Empfänger ist natürlich auch zum Überprüfen von Lautsprechern (Reparaturlautsprechern) und als Tongenerator für jede beliebige Tonfrequenz verwendbar.


Schwer lösbare Gitterkappen

Gitterkappen auf älteren Röhren haften oft so fest, daß beim Abziehen der Ansatz der Röhre mit abgerissen wird. Hält man aber einige Minuten einen warmen Lötkolben von etwa 100 W auf die Kappe, so dehnt sich diese durch die Erwärmung aus und läßt sich leicht abheben.

Reinhardt

Und wieder akustische Rückkopplung

Jeder alte Praktiker erinnert sich noch der Zeiten, als das Problem der akustischen Rückkopplung in einem Mittelpunkt des Interesses stand und oft viel Scharfsinn erforderlich war, um mit diesem lästigen Störenfried fertig zu werden. Allmählich verlor dieses Thema jedoch an Bedeutung und verschwand aus der Fachliteratur fast vollkommen. Es hat aber nun wieder den Anschein, als ob in Verbindung mit der UKW-Technik akustischen Rückkopplungserscheinungen wieder mehr Beachtung geschenkt werden muß. Wenn bisher in modernen Empfängern dieser Fehler überhaupt auftauchte, dann war meistens der Drehkondensator des Oszillatorteiles der schuldige Teil, dessen Platten nicht genügend festsaßen oder aus anderen Gründen durch die Schallwellen des Lautsprechers in mechanische Schwingungen versetzt wurden, die ihrerseits wiederum die Ursache der Heul- und Pfeiferscheinungen waren. Neuerdings tritt aus dem gleichen Grund hin und wieder durch die UKW-Oszillatorspulen eine akustische Rückkopplung auf. Entweder geraten die Spulenwindungen oder die Abstimmkerne bei induktiver Abstimmung in wilde Schwingungen. Im ersten Falle müssen die Spulenkörper oder manchmal auch die Spulen festgeklebt werden, im zweiten Falle empfiehlt es sich, das Führungsseil in der Nähe der Endstellungen der Kerne durch Osen aus Isoliermaterial zu ziehen. In leichteren Fällen genügt oft schon die Umpolung der Schwingspulenanschlüsse des Lautsprechers — soweit dabei nicht irgendwelche Rückwirkungen auf die Gegenkopplung eintreten — oder die Anbringung schalltoten Materials, wie Watte usw., an irgendeiner zugänglichen Stelle auf der gedachten Verbindungslinie zwischen dem vibrierenden Einzelteil und dem Lautsprecher. L. Fronia

Sichern Sie sich den laufenden Kontakt mit unserer Verkaufsleitung besonders in den nächsten Tagen und Wochen.

Nachrichten - Geräte - Programm NAG Neuaubing bei München, Brunhamstraße 21 Germany

B 88

Ein idealer Reisebegleiter

und zu Hause: Ein klangvoller Heimempfänger. Batterie und Netzbetrieb, leistungsstarke Endröhre UL 41.

GWB 167 und GWB 167 K m. Kurzwelle

Preis DM 225,90 (ohne Batterie)

SUDDEUTSCHE TELEFON-APPARATE-, KABEL- U. DRAHTWERKE A.G. TE KA DE NÜRNBERG

Bandgeschwindigkeiten von 19 und 9,5 cm/sec.

Lieferbar in den Längen von 180 u. 350 m auf Kunststoffspulen und von 700 m auf 100 mm Spulenkern.

> Verlangen Sie unseren Prospekt über das Agfa-Magnetonband

FARBENFABRIKEN BAYER LEVERKUSEN
Agfa-Magnetonverkanf

HOBOTON

FÜR EUROPA

UKW-Einbausuper

Type 8425 W und 8425 GW ein Spitzengerät zum Einbau in fast alle Rundfunkgeräte-Modelle auch älterer Bauart. Preis (komplett mit Antrieb)

FÜR ÜBERSEE
Tropen-Superhets
mit 3 Kurzwellen u. Mittelwelle

HOBOTON - BREMEN-HUCHTING

ZEITSCHRIFTENDIENST

Fernseh-Filmabtaster der "Bell Telephone"

Öbwohl die Bandbreite der amerikanischen Fernsehsendungen mit 4 MHz wesentlich größer als die der englischen Sendungen (2,75 MHz) ist, besteht Einstimmigkeit darüber, daß die Filmübertragungen im englischen Fernsehfunk qualitätsmäßig den amerikanischen Übertragungen weit überlegen sind. Man führt das darauf zurück, daß man in England einen Punktabtaster mit Braunscher Röhre und Mechau-Projektor, in Amerika aber ein Ikonoskop mit Speicherwirkung für die Umwandlung des optischen Bildes in elektrische Impulse benutzt.

Die "Bell Telephone Laboratories" haben aus diesem Grunde (nach Electronics, 7/1951) den Bau eines Punktabtasters unternommen. Der kontinuierlich laufende Film wird auch hier von dem Leuchtpunkt einer Braunschen Röhre abgetastet. Der Bildausgleich erfolgt nach dem Prinzip des Mechau-Projektors durch eine umlaufende Trommel mit 18 beweglichen Spiegeln. Die Spiegel werden bei der Umdrehung der Trommel durch Kurvenscheiben so gekippt, daß die kontinuierliche Filmbewegung kompensiert wird und ein stehendes Bild entsteht.

Beachtlich sind nun zwei elektronische Hilfseinrichtungen, die ein absolut sicheres "Stehen" des Filmbildes und eine vollkommen gleichmäßige Bildhelligkeit ohne Flimmern garantieren. Das Zittern des Bildes wird durch eine Hilfslichtquelle verhindert, die ein Perforationsloch des Filmes auf enen Schlitz vor einer Fotozelle projiziert. Jede scheinbare Bewegung des Perforationsloches relativ zum Schlitz verändert die auf die Fotozelle fallende Lichtmenge, und die Fotozelle veranlaßt sofort die Bewegung eines Hilfsspiegels, der die scheinbare Bildbewegung ausgleicht.

Zur Unterdrückung des Bildflimmerns wird der das Bild abtastende Lichtstrahl in zwei Strahlen aufgespalten. Der eine Strahl tastet das Bild in der üblichen Weise ab, während der zweite Strahl neben dem Abtaststrahl am Film vorbeigeht und auf eine Fotozelle fällt. Beide Strahlen erleiden die gleichen Intensitätsschwankungen, soweit sie durch den Spiegelmechanismus bedingt sind. Der am Film vorbeigehende Hilfsstrahl steuert über die Fotozelle die Leuchtpunkthelligkeit der Braunschen Röhre und kompensiert so alle Helligkeitsschwankungen.

BRIEFKASTEN

Walter H., R.

Im zweiten Januar-Heft 1952 wurde in der FT-Kartei die Berechnungsweise für Treibertrafos gezeigt.

Könnten Sie mir nähere Angaben über die Berechnung von Treibertraios auch für die Kerne M 55, M 65 und M 74 mitteilen?

Die in der FT-Kartei im Heft 2 (1952) angegebene Formel für die Berechnung eines Treibertrafos ist eine Faustformel, bei der zum Beispiel eine Spannungsabsenkung bis zu 5%, eine untere Grenzfrequenz von 30 Hz und eine Permeabilität des normalen Trafoeisens von 500 angenommen wurde.

Wenn man diese Werte in die Grundformel einsetzt, die auch den Querschnitt des Blechpaketes und die Eisenweglänge des Blechschnittes enthält, dann kommt man auf den genannten Ausdruck. Werden die gleichen Annahmen auch für andere Querschnitte gemacht, so ist das Ergebnis nur entsprechend der Wurzel aus dem Verhältnis der jeweiligen Eisenweglänge zum Querschnitt der Blechschnitte verschieden. Eine kurze Nachrechnung führt zu folgenden Multiplikationsfaktoren, wobei der 42er Kern mit 1 angesetzt ist:

Kern	M 42	M 55	M 65	M 74	
Multiplikationsfaktor	1	0,8	0,73	0,67	
npr	≈ 134	107	98	90 × √R _G	

Aufnahmen vom FT-Labor: Kunze (S. 294). Zeichnungen vom FT-Labor nach Angaben der Verfasser: Beumelburg (13), Stegmeier (15), Ullrich (14)

Verlag: VERLAG FUR RADIO-FOTO-KINOTECHNIK GmbH, Berlin-Borsigwalde (West-Sektor), Eichborndamm 141—167. Telefon: 49 23 31, Telegrammanschrift: Funktechnik Berlin. Chefredakteur: Curt R in t. Westdeutsche
Redaktion: Karl Tetzner, Frankfurt/Main, Alte Gasse 14—16. Geschäftsstelle
Stuttgart, Postfach 1001. Nach dem Pressegesetz in Osterreich verantwortlich:
Dr. Walter Rob, Innsbruck, Fallmerayerstraße 5. Postscheckkonten FUNKTECHNIK: Berlin, PSchA Berlin-West Nr. 24 93; Frankfurt/Main, PSchA Frankfurt/Main Nr. 254 74; Stuttgart, PSchA Stuttgart Nr. 227 40. Bestellungen beim
Verlag, bei den Postämtern und beim Buch- und Zeitschriftenhandel in allen
Zonen. FUNK-TECHNIK erscheint zweimal monatlich mit Genehmigung der
französischen Militärregierung unter Lizenz Nr. 47/4d. Der Nachdruck von Beiträgen ist nicht gestattet. Die FUNK-TECHNIK darf nicht in Lesezirkel aufgenommen werden. — Druck: Druckhaus Tempelhof, Berlin.

FT-Briefkasten: Ratschläge für Aufbau und Bemessung von Einzelteilen sowie Auskünfte über alle Schaltungsfragen, Röhrendaten, Bestückungen von Industriegeräten. Beantwortet werden bis zu 3 Fragen. Ausarbeitungen vollständiger Schaltungen und Berechnungen können jedoch nicht durchgeführt werden.

Auskünfte werden kostenlos und schriftlich erteilt. Wir bitten, den Gutschein des letzten Heftes und einen frankierten Umschlag beizulegen. Auskunfte von allgemeinem Interesse werden in der FUNK-TECHNIK veröffentlicht.

Gutschein für eine kostenlose Auskunft FUNK-TECHNIK Nr. 11/1952

HERSTELLER: GRAETZ KG., ALTENA WESTF.

Stromart: Wechselstrom Spannung: 110, 127, 150, 220, 240 V Leistungsaufnahme bei 220 V: 65 W, in Sparschaltung 35 W

Röhrenbestückung: EF 42, ECH 42, EF 43, EAF 42, EB 41, EL 41, EM 34

Netzgleichrichter: Trockengleichrichter 300 B 100 (AEG) Sicherungen: 1 A/0,5 A

Skalenlampe: 2 Stück 6,3 V, 0,3 A Zahl der Kreise: AM7 (FM9), abstimm-

bar 2 (2), fest 5 (7) Empfindlichkeit: (μ V an Ant.-Buchse b. 50 mW Ausgang) UKW: 12 ... 15 μ V

(22,5 kHz Hub); M: 20 ... 30 µV

Wellenbereiche:

UKW 101 MHz ... 85 MHz (2,97 ... 3,53 m) Kurz 18,6 MHz ... 5,75 MHz (16,15 ... 52,2 m)

Mittel 1625 kHz ... 515 kHz (185 ... 583 m)

Lang 344 kHz ... 144 kHz (872 ... 2070 m) Abgleichpunkte: s. Abgleichanweisung Bandspreizung: Kurzwellenlupe

ZF-Trennschärfe: 1:180 Spiegelwellenselektion: bei 600 kHz 1: 1000, bei 1600 kHz 1: 100

Zwischenfrequenz: 472 (468) kHz; 10,7 MHz Bandbreite in kHz (fest bzw. regelbar): FM: 225 kHz (iest); AM: 4,5 ... 7 kHz,

stetig regelbar ZF-Saugkreis: 472 kHz

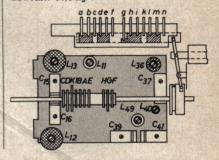
Empfangsgleichrichter: AM Diode; FM Ratiodetektor

Zeitkonstante der Regelspannung: 0,5 us Wirkung des Schwundausgleichs: auf 2 Röhren

Abstimmanzeige: Magisches Auge mit Doppelbereichanzeige

Tonabnehmerempfindlichkeit: 12 mV für 50 mW Ausgang Lautstärkeregler: gehörrichtig

Klangfarbenregler: stetig regelbar, mit Bandbreitenregelung kombiniert

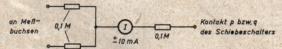

Ausgangsleistung für K 10 %: 4,5 W Lautsprecher:

System: elektrodynamisch Belastbarkeit: 6 W Membran: 214 mm Ø

Anschluß für 2. Lautsprecher: 5 Ω

Besonderheiten: Stromsparschaltung (ermöglicht rd. 30 W Einsparung, schont die Röhren), Kurzwellenlupe zur Dehnung des KW-Bandes an jeder Stelle, Lichtbandanzeiger zeigt die Stellung des Tonreglers optisch an, Wellenbereich-

anzeiger auf der Skala. Gehäuse: poliertes Nußbaumgehäuse Abmessungen: 600×371×295 mm Gewicht: 14,3 kg



Abgleichvorschrift

Die Reihenfolge des Abgleiches "zuerst FM und dann AM" ist unbedingt einzuhalten! Die HF-Eingangsspannung ist während des Abgleichvorganges so zu regeln, daß bei FM die Spannung an den Meßbuchsen etwa 4 V und bei AM die niederohmige Ausgangsspannung etwa 0,5 V ist.

A. Abgleich der Zwischenfrequenzkreise

- I. FM (10,7 MHz)
- 1. Der Empfänger wird auf "UKW" geschaltet.
- 2. Ein hochohmiger Spannungsmesser 0 ... 10 V (Röhrenvoltmeter oder Mikroamperemeter mit 100 µA Vollausschlag und 100 kOhm Vorwiderstand) wird an die Meßbuchsen der Chassisrückwand (von hinten gesehen rechts +) angeschlossen. Die Meßleitungen sind abzuschirmen, um Rückkopplungen auf den Eingang zu vermeiden.
- 3. a) Meßsender mit 10,7 MHz über dämpfungsarmen Kondensator 5000 pF an Anode EF 43. Oberen Kern BF III herausdrehen; unteren Kern BF III und oberen rechten Kern BF II auf Maximum trimmen.
 - b) Meßsender über dämpfungsarmen Kondensator 5000 pF an Anode Hexode ECH 42. Linken oberen Kern BF II und rechten oberen Kern BFI auf Maximum trimmen.
 - c) Meßsender über dämpfungsarmen Kondensator 5000 pF an Oszillator-Drehko UK (rechtes Paket von hinten gesehen), dann linken oberen Kern BFI auf Maximum trimmen.
 - d) Ein Mikroamperemeter mit Nullpunkt in der Mitte wie folgt anschließen:

- e) Meßsender wie 3c); oberen Kern BF III auf Nulldurchlauf des Mikroamperemeters trimmen. Es treten zwei Nulldurchläufe auf. Derjenige ist zu wählen, bei dem der Kern am weitesten hineingedreht ist.
- 4. Nach erfolgtem Abgleich sind die Kerne mit Wachs festzulegen.

II. AM (472 kHz)

- Der Empfänger wird auf MW 1620 kHz eingestellt, der Lautstärkeregler voll aufgedreht, der Klangregler auf dunkel" gestellt (Bandbreite "schmal").
- Ein Ausgangsleistungsmesser (Spannungsmesser 0 ... 1 V) wird an die Buchsen für den Zusatzlautsprecher (Ausgang niederohmig!) angeschlossen.
- Ein moduliertes Signal von 472 kHz wird über einen Block von 0,1 μF an das Gitter der ECH 42 (Kontakt b des Schiebeschalters im Aufbauteil) gelegt und zunächst beim

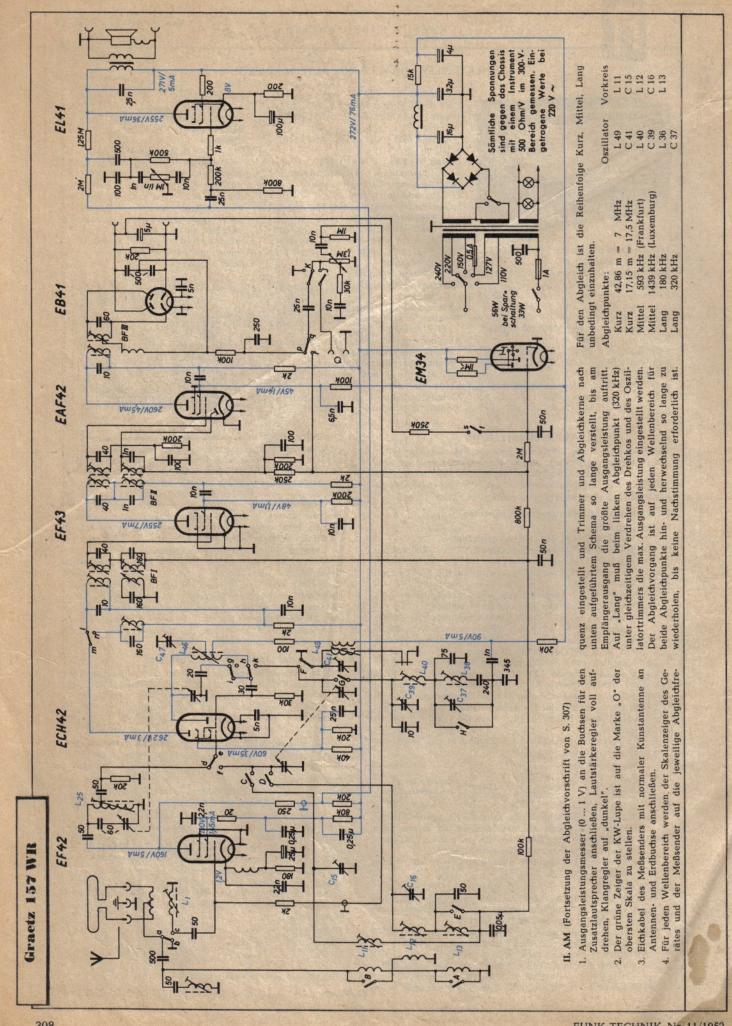
Bandfilter II der untere, dann der obere Kreis auf größte Ausgangsleistung abgeglichen. Hierzu muß der Kreis, der jeweils nicht abgestimmt wird, durch einen Widerstand von 5 kOhm bedämpft werden. Letzteren legt man zwischen die beiden entsprechenden Lötösen der Bandfilterplatte. Anschließend wird der mittlere Stiftkern im 1. Bandfilter herausgenommen. Es werden nun nacheinander die obere und die untere Spule auf größte Ausgangsleistung abgeglichen. Nun wird der mittlere Kern wieder eingesetzt und es erfolgt noch der Abgleich der mittleren Spule.

Es treten gewöhnlich zwei Abstimm-Maxima auf; dasjenige ist zu wählen, bei dem der Kern am weitesten hineingedreht ist.

- 4. Dann legt man das Meßsenderkabel mit der normalen Kunstantenne an die Antennen- und Erdbuchse des Empfängers und stimmt bei gleicher Einstellung des Meßsenders den AM-ZF-Saugkreis auf den kleinsten Ausschlag ab.
- 5. Nach erfolgtem Abgleich sind die Kerne und die Kompensationswicklung mit Wachs festzulegen.

B. Abgleich der Oszillator- und Vorkreise

Die Mitte des Skalenzeigers soll sich bei vollkommen eingedrehtem Drehkondensator mit den rechten Endstrichen der kHz- bzw. Meterteilungen decken. Der Skalenzeiger ist nach Löten der Schraube am Zeigerschlitten entsprechend


I. FM

- 1. Der Empfänger wird auf UKW geschaltet.
- 2. Ein hochohmiger Spannungsmesser (0 ... 10 V) wird an die Meßbuchsen angeschlossen.
- 3. Das Meßsenderkabel wird mit den Dipol-Buchsen verbunden. (Der Meßsender kann unmoduliert sein.)
- 4. Der Skalenzeiger des Gerätes und der Meßsender werden auf die jeweilige Abgleichfrequenz eingestellt und Trimmer und Abgleichkerne so lange verstellt, bis am Spannungsmesser die größte Spannung auftritt. Die Spiegelfrequenz liegt höher als die Abgleichfrequenz. Das Maximum des Antennenkreises liegt sehr breit. Der Abgleichvorgang ist für beide Abgleichpunkte wechselseitig so lange in der angegebenen Weise zu wiederholen, bis keine Nachstimmung mehr erforderlich ist. Der letzte Abgleichvorgang ist der Trimmerabgleich. Dann werden die Kerne mit Wachs festgelegt.

Abgleichpunkte:

Oszillator Vorkreis Antennenkreis Frequenz L 46 L 25 88.5 C 47

Die Abgleichpunkte sind auf der MHz-Skala markiert. (Fortsetzung auf S. 308)

PERTRIX-UNION G.M.B.H. FRANKFURT/M.

Gesteigerter Forumer-Umsan durch das preiswerte Einbauaerät

UK 83 WIGW Ein 9 Kreis-UKW-Einbausuper.

Geeignet zum Einbau in jedes Rundfunkgerät aller Fabrikate.

Günstige Teilzahlungen

GRAETZ KG-ALTENA (WESTF.)

Röker - Elkos besser und billiger denn je!

Bakeli	t -	Rohr:			Alu-B	ech	er:			
4	MF	350/385	DM	75	16	MF	350/	385	DM	1.50
8		A PROPERTY OF		95	32		V. The		To Vis	1.95
16			-()	1.20	50				-1	2.50
32	Ra I		6	1.65	16+16				6	2.40
50		. / 10)	2.10	32+32			V:()	٨.	3.10
16+16		. 111		2.10	50+50			1.1.) .	4.25
4	MF	450/550	DM	85	8	MF	450x	550	DM	1.35
8		10.		1.10	16		", O.			1.85
16		,01	*	1.55	32		17.			2.75
32		112 .		2.30	50	·X	V.			3.15
8+8	11		*	1.80	8+8	0,			*	2.10
8+16	V.			2.10	16+16	10				3.05
50		160/200		1.40	32+32)				4.20

5%, Rabatt ab 10 Stück, auch sortiert! — Ein Jahr Garantie! anfordern. — Nur für den Fachhandel. — Keine Zwerg-Elyts!

Berlin-Heukälln, Silbersteinstraße 15

S- und U-Bahnhof Neukölln (2 Minuten)

Tel. 62 12 12 aftszeit täglich 8 bis 18 Uhr sonnabends 8 bis 14 Uhr

Soeben erschienen!

DR. REINHARD KRETZMANN

INDUSTRIELLE ELEKTRONIK

Din A5 · 232 Seiten · 234 Abb. · Ganzleinen Preis · DM 12,50

Erstmalig in der deutschen Fachliteratur

Ein Werk für den modernen Betriebsingenieur aller Zweige der industriellen Fertigung — wichtig für jeden HF-Techniker
Der Verfasser dieses Werkes ist einer der bekanntesten Fachleute für industrielle Elektronik in Deutschland. Sein Buch ist eine Arbeit aus der Praxis und dient sowohl dem HF-Techniker als Unterlage für neue Aufgaben auf diesem Gebiet als auch dem Betriebsingenieur, dem hiermit wertvolle Anregungen zur Modernisierung und Leistungssteigerung des ihm unterstellten Maschinenparks gegeben werden.

Zu beziehen durch Buchhandlungen, andernfalls durch

VERLAG FÜR RADIO-FOTO-KINOTECHNIK GMBH

Berlin - Borsigwalde (Westsektor)

Verkäufe

RADIOGESCHAFT

bei geringer Anzahlung in günstiger Verkehrs- u. Laufgegend zu verkaufen

(B) F. W. 6918

Radio-. Schallplattengeschäft, 2 Läden, mit Reparaturwerkstatt, 15 m Straßenfront, 70 qm Vorgarten, geeignet für Fernsehen u. Elektroartikel. 50 Jahre bestehend, vollständig eingerichtete Wohnung, ohne Tausch, wegen hohen Alters und Todesfalls verkäuflich oder Teilhaberschaft. (B) F. Z. 6921

Verkaufe günstig 75-Watt-Verst. Radio Meverstüve. Süderbrarup

Stellenanzeigen

Wir suchen für unsere

FÜR UNSER PRÜFFELD IN HILDESHEIM befähigte und erfahrene Ingenieure auf den Gebieten der Rundfunk- und Autoempfängertechnik sowie des Fernsehens. Für den technischen Verkauf werden Bewerber bevorzugt, die englisch und französisch sprechen

Außerdem werden jüngere Kräfte als Nachwuchs für die gleichen Arbeitsgebiete eingestellt. Desgleichen werden noch einige jüngere Versuchs- und Rundfunkmechaniker gesucht Bewerbungen mit handgeschr. Lebenslauf u. Zeugnisabschr. sind zu richten an:

Personalleitung der BLAUPUNKT-WERKE GMBH., Darmstadt

amateurbedarf

Sonderangebot, fordern Sie Liste. 150 Widerstände, 30 Kondensatoren, 10 Becherkondensatoren, **6 Elektro**lyt-Kondensatoren DM 15,-

FUNKLABOR BRAUM, Königstein /Ts.

Abgleich, Prüfung, Reparatur sowie Einzel- und Serienfertigung von Geräten

65% Rabatt

erhalten Sie auf Grund meiner neuen

Nettopreisliste

Auch ich möchte Ihnen nicht nur

Engpaß-Typen sondern alle Röhren liefern.

Ich bedauere daher die Linie (feste Bruttopreise - feste Rabatte) aufgeben zu müssen.

RÖHRENSPEZIALDIENST

ein Begriff für Qualität, Lieferfähigkeit und prompteste Bedienung

GERMAR WEISS

Großhandel - Import - Export FRANKFURT MAIN HAFENSTR. 57 - TELEFON 736 42

KAUFE R'O'HREN ALLER ART GEGEN KASSE

Kaufgesuche

Radioröhren Restposten, Kassaankauf Atzertradio, Berlin SW 11, Europahaus Röhren-Restposten kauft laufend Röhren-Hacker, Berlin-Neukölln, Silbersteinstr.15, S- u. U-Bahn Neukölln (2 Män.). Ruf 62 12 12

Wir erweitern sämtliche

RÖHREN-MESSGERÄTE

(Bittorf & Funke)

und liefern

RÖHREN - PRÜFKARTEN

alte, neue u. neueste Röhrentypen - Reparaturen

FUNKMECHANIK . DUREN / RHLD.

Schaltungen

europ. u. amer, Industriegeräte Verstärker u. kommerz, Geräte Einzeln, in Mappen u. Büchern

Fernunterricht in Radiotechnik und Fernsehen. Techn. Lesezirkel, Fachbücher. Prospekte frei

Ferntechnik Ing. H. LANGE Berlin N 65/Lüderitzstr. 16/Tel. 468116

H. A. W U T T K E Frankfurta.M. 1, Schließfach, Tel. 52 549

Achtung!

SONDERANGEBOT IN UKW-PENDLERN

Ein Restposten von leistungsfähigen 2-Röhren - L'KW-Pendlern wird zu außerordentlich günstigem Preis in großen oder in kleinen Posten verkauft.

ANGEBOTE ERBETEN UNTER (US) F. Y. 6920

Radioskalen.

Skalen für Meßgeräte usw. gedruckt und geprägt, aus Glas und Kunststoffen aller Art für die einschlägige Industrie liefert kurzfristig und preisgünstig in bester Ausführung

JOSEPH REISS . Techn. Kunststoffwaren- u. Glasskalenfabrik . TETTNANG, WÜRTT.